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New technologies for air quality measurement, including real-time on-road air quality monitoring systems 
(ROMs), have improved the spatial resolution of data. However, measured data can miss due to restricted 
traffic zones. Different algorithms can estimate the missing data in these points, using available measured 
data in the neighbourhood. In this study, the results of the applications of an interpolation method taking into 
account the effect of wind direction and intensity by means of a simple dispersion model is presented. Thanks 
to the large amount of data provided by the innovative dynamic monitoring system (ROM), the proposed 
model is able to return, with a good approximation, reliable PM10 and PM2.5 concentration values, with a 
resolution of 1 km2. 

1. Introduction

In recent years air quality data are used to investigate the relationship between air pollution and human health 
to quantify the effect of exposure to pollutants (Donaire-Gonzalez et al., 2019). With this regard, the European 
Union reported daily and annual limit concentrations for some of the major pollutants in the Directive 2008/50/ 
EC to support decarbonisation (Sofia et al., 2020a). Therefore, it is necessary to create accurate monitoring 
networks, which can measure and record time series of major pollutant concentrations (Sofia et al., 2018). 
Analysis of these data allows the pollution forecast (Lotrecchiano et al., 2019) and investigating the effect of 
pollution sources by means of dispersion models at steady state (Sofia et al., 2020b) and over the time 
depending on the weather conditions and emission factors (Lotrecchiano et al., 2020). The accuracy of 
models depends on many factors, including the spatial and time resolution of the source data, the quality of 
the meteorological data in the area, the assumptions about the physical and chemical processes in the 
atmosphere involving the transport and conversion of pollutants (Sofia et al., 2020c).  
Recently, cheaper smart measurement devices (Sofia et al., 2019) allow the measurement of pollutant 
concentrations with higher spatial-temporal resolution. Moreover, the design and implementation of portable 
measuring devices, like the real-time on-road monitoring stations (ROMs) (Lotrecchiano et al., 2019), allows 
collecting a huge amount of data with a much higher spatial resolution. However, a lack of data may occur in 
areas inaccessible to vehicles, such as traffic-restricted zones or city parks. Spatial interpolation methods 
based on either a deterministic or stochastic approach can be used to estimate missing data. In addition to 
simple linear interpolation, kriging is one of the most used statistical methods for physical data depending on 
atmospheric dispersion in Geostatistics, the science studying the natural phenomena that develop on the 
territory. In particular, kriging is a spatial interpolation method combining an atmospheric dispersion model and 
a pollutant emissions inventory to interpolate the model outputs (Beauchamp et al., 2018). Differently, Inverse 
Distance Weighting (IDW) calculates missing concentration data based on the weighted sum of the 
neighbouring observations considering the inverse of the distance. In general, deterministic methods do not 
take into account the variability in the spatial domain of the parameter to be interpolated and their 
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implementation is arbitrary. Furthermore, the results are extremely dependent on the spatial configuration of 
the input data and on the sampling schemes. The measures provided by the monitoring systems in general 
are sparse and must be expanded in space through the implementation of a model to have clear information 
on the environmental situation. 
In this work air quality data measured by ROMs over a very large area, the city of Milan, are elaborated to find 
a suitable interpolation procedure to calculate pollutant concentrations in positions where measurement data 
are not available. It is expected that the availability of a large amount of data distributed on the ground could 
allow to obtain significant interpolation results using fairly simple approach to pollution data. 

2. Materials and methods

Data 

The air quality data used in the present work were measured by the ROMs network installed in Milan (Italy). 
This type of technology is patented and properly designed to be located on moving vehicle. The network 
consists of 53 measuring devices located on courier vans. Each device provides measurements of the main 
aero-dispersed pollutant concentration such as particulate matter of different sizes PM1, PM2.5, PM10, and 
gases as H2S, CO, O3, NO2, SO2 and, VOC. In addition to the air quality measurements, meteorological data 
as temperature, pressure and relative humidity are acquired as well. Wind intensity and direction data are 
obtained from an external meteorological station using an application programming interface key (API key). 
The ROMs data are protected and unchangeable due to the implementation of a blockchain system that 
guarantee the data integrity (Sofia et al., 2020d). The area covered by the moving measuring stations is about 
306 km2 and corresponds to the whole metropolitan area of the city of Milan. In this work only the PM10 and 
PM2.5 concentration data are used. The measuring device provides latitude and longitude coordinates via 
GPS. The data acquired every 3 minutes are aggregated on a daily base and with a spatial resolution of 1 
km2. Data are reported on a grid of 1 km2 square cell and the data acquired in January and February 2020 
were used in this work.  

Figure 1. Comparison between PM10 daily concentrations measured by the ROMs and the ARPALombardia 
air quality network in a) Verziere and b) Senato in Milan on January 2020. 

The ROMs data was compared with the measured one provided by the ARPA Lombardia air quality network, 
which provides pollution data collected according to the Italian Legislative Decree 155/2010. In Figure 1 it is 
clear that the two measuring technologies (laser scattering and gravimetry) provides data fairly well 
comparable.  

Methodology 

Raw concentration data, c, are transformed into deviation with respect to an assumed background value, cbg, 
corresponding to the minimum concentration value recorded in the whole grid. Therefore, the interpolation 
procedure processes the deviation values C=(c−cbg). In order to estimate missing concentration data, each 
cell, where measured data is available, can be considered that pollution data in neighboring cells are 
interdependent and that the interdependence decreases with the distance but is stronger in the wind direction 
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as it may happen if each point is considered as a pollutant emission source. This could be more detailed, if it 
could be possible to identify the specific intensity of emission source in each area. However, in an urban area 
with roads, houses and other activities as a source of particulate emissions an assumption of a fairly uniform 
emission on the ground is a good approximation of the real situation. In the following the procedure adopted to 
evaluate the mutual cell interdependence. Each measured data in a cell is considered the starting point of the 
spatial expansion of locally produced pollutants and provides its contribution to an expansion matrix. After the 
application of the expansion model to all cell with a measured value, the obtained matrices are combined to 
obtain a final matrix. The latter is given by linear combination of all the estimated matrices with a weight 
proportional to the distance from the emission source cell. The spatial expansion takes into account the wind 
intensity and direction to model the pollutant dispersion phenomenology. The approach used in this study 
assumes a pollutant dispersion field such that each emission source could generate iso-concentration elliptical 
lines, with the source cell centre located in one of the focal points. The concentration in the points of each 
ellipse is equal to the measured concentration in the source cell multiplied by a decay factor depending on the 
ellipse size. It is assumed that the main axis of each ellipse is placed along the wind direction and the ratio 
between the ellipse axes is a function of the wind speed. Accordingly, the axes have been defined by the 
following equations (Eq.1): ൜ ܽଶ + ܾଶ = ଶܽଶݎ2 = ܾଶ +  ଶ  (1)ݒrଶߛ

where ܽ is the semi-major axis, ܾ is the semi-minor axis, ݒ is the normalized wind speed, ݎ is the distance at 
which a given concentration decay coefficient is obtained in the absence of wind. 
The estimated concentration in each cell in (i, j) position, ܧܥ௜,௝, is a linear combination of the concentrations of 
the neighbouring source cells, ܥ௞,௟, properly weighted by means of factors corresponding to the source cells 
ellipses, passing through the (i, j) cell itself. In particular, the considered source cells are the closest eight on 
the grid placed around the (k, l) cell. The resulting concentration is given by the Eqs. (3) and (4): ܧܥ௜,௝ = ∑ ∑  ௞,௟௟ୀ௝ିଵ,௝ାଵ௟ஷ௝ ௞ୀ௜ିଵ,୧ାଵ௞ஷ௜   (2)ݓ௞,௟ܥ

௞,௟ݓ = ఈೖ,೗∑ ∑ ఈೖ,೗೗సೕషభ,ೕశభ೗ಯೕ ೖస೔షభ,౟శభೖಯ೔ ⇒ ∑ ∑ = ௞,௟௟ୀ௝ିଵ,௝ାଵ௟ஷ௝ ௞ୀ௜ିଵ,୧ାଵ௞ஷ௜ݓ 1 (3)

where ݓ௞,௟ is the weighing factor of the concentration contribution for the neighbouring cell in the (k, l) position 
and ߙ௞,௟ is the corresponding decay coefficient. The decay coefficient was evaluated in two alternative ways. 
In the first case, ߙ௞,௟ decreases linearly with the size ݎ௞,௟ of the ellipse, having a focus in the point in the (k, l) 
position  and passing through the point in the (i, j) position, and defined by Eq (4): ߙ௞,௟ = 1 −  ௞,௟݀௖  (4)ݎ

where ݀ܿ.is a decay constant with  ݀௖=0.05. In the second case, ߙ௞,௟ is evaluated by an exponential decay 
function with ݀௖=1.57: ߙ௞,௟ = exp (−ݎ௞,௟݀௖)  (5) 

The parameter γ appearing in Eq. (1) is obtained by minimizing the deviation function, f, obtained as the sum 
of the squares of the residuals between the estimated concentration ܧܥ௜,௝ and the measured concentration ܥ௜,௝, for the neighbouring cells where measured data are available: ݂ = ∑ ∑ ට(ܧܥ௟,௝ − ௞,௟)ଶ௟௞ܥ (6)

To evaluate the performance of the complete model, the normalized root mean square error between the 
measured values and the corresponding values estimated with the model was calculated as follows: 

ܧܵܯܴܰ = ඨଵே ∑ ∑ ൬஼ா೗,ೕି஼ೖ,೗஼ೖ,೗ ൰ଶ௟௞ (7)

where N is the number of the values estimated. 

3. Results

Preliminary calculations aimed at evaluating the optimal parameters and equations of the spatial dispersion 
model. Figure 2b shows that the f function, defined by Eq. (6), is weakly dependent on the parameter γ, 
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probably due to the normalization of Eq. (3). Nevertheless, a minimum value can be observed and, thus, an 
optimal value for γ was set to 1.5. The parity plot of Figure 2a compares the concentration values, estimated 
by Eq. (2), using for the decay coefficient ߙ௞,௟ Eq. (4) or Eq. (5), respectively. Inspection of the figure reveals 
that there is not a significant difference between the estimated values. As a result, the exponential decay 
function of Eq. (5) was adopted for the rest of the study since it yields intrinsically ߙ௞,௟ values between 0 and 1. 

Figure 2. 2a) Comparison between CE concentration values estimated by Eq.(2): CE (1) with ߙ௞,௟ according to 
Eq.(4), CE (2) with ߙ௞,௟ according to Eq.(5). 2b) Minimization of f as a function of parameter γ. 

The grid (x, y) covering the investigated area of Figure 1, also reported in Figure 3, was rotated by an angle β 
corresponding to the wind direction. Figure 4 reports the eight ellipses with constant decay coefficient values, 
calculated according to Eq. (5), passing through a selected (i, j) point, to estimate ܧܥ௜,௝ as a function of the 
measured concentration in the eight neighbouring cells. Inspection of the four panes, corresponding to 
different normalized wind intensity values, suggests that the higher is ݒ , the longer is the ellipse major axis 
and the more effective is the pollutant dispersion. This scenario corresponds to lower ߙ௞,௟ values for the 
source cells located downwind with respect to the (i, j) point and to higher ߙ௞,௟ values for the source cells 
located upwind. As a result, the concentration ܧܥ௜,௝ is affected by the concentration of the neighbouring cells 
with different weights. On the contrary, the lower is ݒ, the shorter is the ellipse major axis and the less 
effective is the pollutant dispersion. In absence of wind (Figure 5a), i.e. ݒ = 0, the ellipses turn into circles 
corresponding to the lowest dispersion and the pollutant concentration tends to accumulate in the vicinity of 
the source cells. In this case, comparable ߙ௞,௟ values are obtained for all the neighbouring cells and their 
corresponding concentration values affect the concentration ܧܥ௜,௝ with the same weight.  

Figure 3. Example of point location on the measurement position map. 

Figure 5 shows an example of the resulting PM10 and PM2.5 maps after the spatial interpolation according to 
Eq. (3) and using the measured concentration data, the wind intensity and direction. Concentration is 
represented according to a colour scale. Solid circles correspond to measured data, while hollow circles 
correspond to estimated data. The estimated values appear in good agreement with the close measured data. 
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The estimate is less satisfactory in the periphery of the map where less measured points were available and 
the background concentration value ܿ௕௚ was assumed. On the whole, the interpolation model appears 
effective considering that the error function NRMSE values, obtained according to Eq. (7), were in the range of 
0.08-0.7 for the majority of tested concentration maps. Analyzing the NRMSE calculated using the estimated 
data closest to the regional monitoring devices, the value of 0.1 is obtained, indicating a good agreement 
between the estimate and the measured values. Comparison with other spatial estimation methods will be the 
subject of further work. 

Figure 4. Decay coefficient elliptical fields to evaluate the concentration in the (i, j) point corresponding to the 
solid circle as a function of the concentrations measured in the eight neighbouring (k, l) points represented by 
the open circles for a) 0=ݒ, b) 0.2=ݒ, c) 0.5=ݒ, d) 0.8=ݒ at wind direction of 247.5°. Corresponding ߙ௞,௟values 
are reported on the curves. 

4. Conclusions

The proposed interpolation method appears to describe qualitatively the effect of wind direction and intensity 
on the pollutant dispersion. The parameter relating the wind speed and the decay coefficient function ߙ௞,௟ was 
optimized. This parameter plays a more important role than the mathematical function type chosen for ߙ௞,௟ on 
the interpolation performance, provided that the weighing factors ݓ௞,௟ of the neighbouring concentrations are 
normalized. The resulting deviation between measured values of PM10 and those estimated by the proposed 
method is generally lower than 4 µg/m3 and only in rare cases it approaches 10 µg/m3 with NRMSE of about 
0.3. These satisfactory results provide some confidence in the modelling approach and encourage further 
developments. Future work will consider a possible increase of the number of points with measured data to 
estimate the concentration in peripherical points. Finally, this type of spatial expansion could be used also in 
combination with other dispersion approaches like the Gaussian Plume and Puff dispersion models. 
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Figure 5. a) PM10 and b) PM2.5 concentrations estimated applying the spatial interpolation model. Solid 
circles correspond to measured data while hollow circles correspond to estimated data. 
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