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The use of hydrogen (H2) as an energy carrier may have an important role in the near future. Nowadays, H2 is 

mostly produced from fossil fuels, thus, it is urgent to prove the viability of alternative and sustainable processes 

to obtain H2. Gasification of renewable sources like biomass that are widely available, inexpensive and carbon-

neutral is considered a viable technical, economic and environmental alternative for H2 production. The first step 

of biohydrogen (bio-H2) production through biomass gasification is the production of syngas (gasification gas). 

Syngas cleaning and upgrading procedures are essential to remove undesirable compounds and to increase 

bio-H2 content. Steam reforming and water gas shift reactions are also crucial to increase bio-H2 content in 

syngas. Next, bio-H2 separation from other gaseous compounds is needed to finally obtain bio-H2 at the required 

purification level. Although some of the mentioned technologies are proven and available on the market for 

similar applications, some drawbacks and technological challenges for the overall process need to be overcome 

to improve the overall techno-economic feasibility. This paper aims to analyse and discuss different bio-H2 

production routes from biomass gasification to c the most promising ones. 

1. Introduction 

Gasification is a thermochemical conversion process that is suitable to convert a wide range of feedstocks 

(sewage sludge, forestry biomass, agro-industrial wastes, energy crops, plastics mixtures, used tyres, RDF 

(refuse derived fuel), MSW (municipal solid waste), etc.) into syngas. This gas contains H2, carbon monoxide 

(CO), carbon dioxide (CO2), gaseous hydrocarbons, mainly methane (CH4), tar and other minor components, 

like NH3, H2S, etc. Gasification main advantages are high fuel conversion and flexibility, as mixtures of different 

feedstocks may be gasified. However, as there is a rising interest in gasifying poor quality materials and some 

may contain high amounts of undesirable elements that may form pollutant precursors, some of the most 

interesting syngas utilizations are limited or difficult, unless suitable syngas cleaning and upgrading procedures 

are used. There are several biomass gasification technologies with the possibility of gasification integration with 

other technologies. 

Gasification gas may be used in different sectors like heat and power generation, transport fuel and chemicals 

production, and bio-H2 production. Thus, nowadays gasification main research areas besides bio-H2 production 

(see, for instance, Cao et al., 2020) are the production of SNG (synthetic natural gas) to substitute fossil natural 

gas, as well as the capture, storage and utilization of CO2 from gasification process - Bio-Energy Carbon Capture 

Utilization and Storage (BECCUS). Another important subject is syngas utilization to produce biofuels and 

biochemicals, instead of only CHP (combined heat and power) applications. Syngas is used in chemical 

synthesis like FT (Fischer–Tropsch) to obtain liquids (kerosene, diesel, gasoline) or to produce bio-DME 

(dimethyl ether) to be used in long-distance transportations (Sapariya et al., 2021).  

This paper revises and analyses the main technological processes to convert syngas into bio-H2, by different 

production routes with the aim of pointing to the most promising ones. 
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2. Technology assessment 

Biomass gasification has been widely studied and there are different technologies available. In autothermal 

gasification, oxygen or air is used for heat production by partial oxidation, while in allothermal gasification, the 

heat needed for gasification reactions is supplied by an external source. In Table 1 are summarised the main 

conventional biomass gasification technologies, considering gasifier type and typical operating conditions.  

Table 1: Biomass gasification technologies (Costa et al., 2021). 

Gasification Technology  Main Operating Conditions 

Fixed Bed Gasifier 

Downdraft 

Updraft 

Crossdraft 

 

Outlet Gas Temperature: ~ 500ºC  

Reaction time: ~ minutes 

Particle size: 5 – 50 mm 

Fluidized Bed Gasifier 

Bubbling Bed 

Circulating Bed 

 

Outlet Gas Temperature: 700 – 900ºC 

Reaction time: 5 – 50 s 

Particle size: 0.5 – 5 mm 

Entrained Flow Gasifier  

Temperature: 900 – 1400ºC 

Reaction time: 5 – 50 s 

Particle size: < 500 µm 

 

For some end-uses, like bio-H2 production, syngas has to be free of nitrogen, so oxygen has to be used instead 

of air in the partial oxidation, or allothermal gasification technologies should be selected, as those presented in 

Table 2. These gasification technologies have been mentioned to be suitable for H2 production (Binder et al., 

2018). Mainly, the DFB technology was developed to commercial scale for biomass steam gasification in a plant 

in Güssing, Austria (Pfeifer et al., 2009). So far, SEG was able to produce H2 contents around 73% v/v higher 

than those of DFB, though, only pilot-scale installations have shown successful operation (Binder et al., 2018). 

Table 2: Main biomass gasification technologies for bio-H2 production. 

Gasification Technology  Main Characteristics  

Dual Fluidized Bed (DFB) 

Gasification (Pfeifer et al., 

2009) 

Gasification combined with combustion 

Bubbling fluidized bed gasification operates with steam, in absence of oxygen 

Combustion reactor works with air as a fast fluidized bed 

Heat is transferred from the combustor by circulating bed material 

MILENA gasification 

technology (Van der 

Meijden, 2010) 

Two fluidized beds like DFB 

Fast fluidized bed gasification operates with steam 

Combustion reactor works as a bubbling fluidized bed 

Heat-pipe Reformer  

(Karl, 2014) 

Combustion and gasification reactors are bubbling fluidized beds 

The gasifier is a pressurized vessel (2-10 bar) and operates at 800 °C 

Heat transfer from combustion to gasification is attained through heat pipes 

Sorption Enhanced 

Gasification (SEG) 

(Parvez et al., 2021) 

Two fluidized beds and a circulating loop of bed material are used 

CaCO3 is used as bed material, which is converted into CaO in the combustor 

and moved to the gasifier where it absorbs CO2 and originates CaCO3 

 

In Figure 1 are presented the most important operations to convert syngas into bio-H2. Gasification gas 

composition depends on the gasification technology and conditions employed, and also on feedstock type. It 

should be as near as possible to the requirements of syngas utilisation to simplify cleaning and conditioning 

processes, to decrease CAPEX (capital expenditure) and OPEX (operational expenditure). However, syngas 

cleaning and conditioning procedures are of most importance, especially when poor quality feedstocks are used, 

to remove minor undesirable compounds and to increase bio-H2 content. Two options are available: i) hot gas 

conditioning, where syngas is kept at high temperature, like hot cyclones, physical filtration at hot conditions, 

adsorption at high temperature, thermal cracking or thermal catalytic cracking processes, or ii) cold gas 

conditioning that uses syngas at low temperature (close to ambient temperature) and two options may be 

selected here: dry scrubbing or wet scrubbing. Examples of the former are cyclones, rotating particle separators, 

electrostatic precipitators, bag filters, baffle filters, ceramic filters, fabric/tube filters, sand bed filters, adsorbers, 
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etc., while for wet scrubbing may be used spray towers, packed columns, wash tower scrubbers, impingement 

scrubbers, venture scrubbers, wet electrostatic precipitators, wet cyclone sand, etc. (Costa et al., 2021). 

Cold syngas cleaning operations are an option when syngas is used at atmospheric pressure and at low 

temperature. Normally, after the cyclone, the syngas goes into cooling or washing towers to collect tars. If 

syngas processing requires high temperature, hot gas cleaning processes are the best option to achieve good 

energy management and to lower operating costs. The selection of the most suitable process depends on 

syngas initial composition, purity required by syngas application, temperature and pressure of the gas utilisation 

technologies, complexity of these processes and degradation, losses and cost of the solvents or catalysts used 

in syngas cleaning. A very important issue in the selection of cleaning and conditioning processes is the 

temperature at which the syngas is going to be used.  

 

Figure 1: General layout of biomass gasification to produce Bio-H2. 

Next, the most significant processes for bio-H2 production via biomass gasification, as illustrated in Figure 1, 

are reviewed in a summary form. First, the main syngas cleaning and conditioning processes (RME (rapeseed 

oil methyl ester) scrubber, amine scrubber for CO2 removal, thermal catalytic cracking and syngas steam 

reforming) are revised.  

RME scrubber for tar abatement is considered to be an important cold gas conditioning process in bio-H2 

production routes. In RME scrubber steam is condensed and tar removals from 5 to 1.5 g·m-3 were reported 

(Binder et al., 2018). No waste stream is discharged from the system, when emulsions are separated and burnt 

to provide energy. It was proven at the commercial scale in DFB plants in Austria (Güssing and Oberwart), 

Germany and in Sweden (Senden) (Binder et al., 2018).  

Amine scrubber for CO2 removal is also a cold gas conditioning process for bio-H2 production routes. Meerman 

et al., 2013 tested different amines for CO2 removal and the following order for CO2 absorption capacity  was 

reported: MDEA (methyldiethanolamine) < DEA (diethanolamine) < MEA (monoethanolamine) ~ aMDEA 

(activated MDEA with piperazine). However, some drawbacks still exist: a significant amount of energy is 

needed for the regeneration step, especially when H2S is absorbed; some scrubbing liquid is lost by evaporation 

and has to be often refilled; corrosive behaviour of amines and the formation of non-soluble salts and foaming 

(Bauer et al., 2012).  

Thermal catalytic cracking processes have been successfully reported for tar abatement for hot syngas cleaning 

and conditioning and different types of catalysts and conditions have been tested. There is much information 

about this subject in the literature, for instance Din and Zainal, 2017 reviewed catalysts for tar cracking and 

reported that there are still some challenges like catalysts deactivation, due to poisoning, erosion, attrition 

(dolomite), fouling, thermal degradation and phase transformation. Ni based catalysts were reported to be a 

good option for tar reduction. 

Syngas steam reforming reactions to convert hydrocarbons (mainly CH4) to increase H2 formation have been 

widely studied by several authors. For example Tan et al., 2020 analysed the cross effect of several parameters 

such as: the type of hydrocarbon, catalyst type, temperature and the steam/carbon ratio, to achieve the best 

performance and maximize H2 production.  

The Water gas shift (WGS) reaction (CO+H2O ⇆ CO2+H2) is also crucial to increase bio-H2 content in syngas 

while simultaneously decreasing the CO content. Two different types of catalysts may be used: low temperature 

catalysts (~200-350 °C) and high temperature catalysts (350-550 °C). Co-Mo-based catalysts are resistant to 

sulphur poisoning, while Zn-based catalysts are very sensitive to sulphur, both are examples of low temperature 

catalysts. An example of high temperature catalysts are Fe-Cr-based, which has shown to be relatively 

inexpensive, resistant to sintering (due to Cr2O3) and resistant to sulphur and chlorine compounds. 

Main H2 separation/purification technologies are pressure swing adsorption (PSA) and gas permeation through 

membranes. The later also operates in a continuous mode and is easily controlled. Different types of membranes 

for H2 separation have been used: polymeric, porous (ceramic, carbon, metal), dense metal and ion-conductive 

membranes. Polymeric membranes have been significantly commercialized. However, the main challenge is to 

increase H2 separation, as large selectivity has been reported.  

Bio H2

Gasification
Syngas 

Conditioning

H2

Separation

Steam

Biomass

Steam

Water 

Gas-Shift

Syngas 

Cleaning

O2/Air/CO2
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H2 purification could be increased by multistage membrane systems with recirculation of the permeate or 

retentate streams, but the improvement has to be enough to balance the rise in investment and running costs 

and this still needs to be demonstrated on a large scale (Pinto et al., 2013).  

PSA is a cyclic adsorption process with multiple fixed beds, alternating between adsorption, where the adsorbent 

selectively retains the heavier components contained in the feed stream, and regeneration, where these same 

species are removed from the adsorbent (e.g. through the reduction of the total bed pressure). PSA is used in 

industrial hydrogen purification, producing H2 with a purity greater than 99.99% (Voldsund et al., 2016). Besides 

being widely used at industrial scale, some new PSA developments have been reported, for instance, Streb et 

al., 2019 developed a new PSA/VSA (vacuum swing adsorption) process for co-production of CO2 and H2, after 

steam reforming and WGS, with the ability to obtain both components with a purity greater than 95% and 

recovery greater than 90%. PSA was tested in a DFB biomass steam gasification plant in Oberwart, Austria, 

where four vessels filled with activated carbon (Norit, RB2), as adsorption agent, and operating in a cyclic 

sequence led to high H2 purity (99.97 vol % db) and H2 recovery of 80-90% (Fail et al., 2014).  

3. Bio-H2 production routes from biomass gasification 

Binder et al., 2018 did some process simulation calculations, using a steady-state simulation tool, and proposed 

two routes for bio-H2 production via biomass gasification, one using DFB gasification and another one SEG 

technology. For both routes, steam is used for gasification, while air is used for the combustion reactor, which 

has the advantage of no pure oxygen needed. In Figure 2 is presented a general layout of biomass DFB 

gasification to produce bio-H2. After DFB gasification and before the WGS reactor, it is advisable to have syngas 

cleaning and conditioning operations, depending on the feedstock type and on syngas initial composition, to 

prevent WGS catalyst deactivation and to increase its lifetime. However, if in the WGS operation, a catalyst 

resistant to sulphur is used, a detached process step for sulphur removal may not be necessary, as most of the 

organic sulphur compounds are hydrated in the WGS unit and converted to H2S, which may be separated from 

the gas stream in the downstream amine scrubber. Some remaining organic sulphur is separated in the PSA 

unit and goes into the adsorbate flow (Binder et al., 2018). As tar abatement happens only in the RME scrubber, 

care should be taken about the amount of tar that may go into the WGS reactor, to ensure its operations in the 

right conditions and to prevent catalyst deactivation. 

 

Figure 2: General layout of biomass DFB gasification to produce bio-H2 (adapted from Binder et al., 2018). 

After the WGS reactor, syngas goes into an RME scrubber for tar abatement, where steam is condensed, and 

next it goes to the amine scrubber, using aMDEA, to remove CO2. After the amine scrubber, the gas is 

compressed and goes into the PSA. Further CO2 removal happens in the PSA unit together with other 

compounds of the adsorbate. The PSA may use activated carbon as adsorbent and operating pressure may be 

around 10 bar. Pressurised H2 recovery of about 85% and with purity of 99.97% were reported by Binder et al., 

2018.  

The adsorbate, containing mainly CH4, C2H4, C2H6, H2O, CO, CO2 and H2, is introduced in a steam reformer 

reactor to convert the hydrocarbons into CO, CO2 and H2. Afterwards, this stream goes into the WGS operation 

for further production of H2. Some adsorbate may be burnt to supply the energy needed by the steam reformer.  

H2 production via biomass SEG, shown in Figure 3, has fewer operations than Figure 2 route, because CO2 is 

separated inside the gasifier by limestone. Thus, syngas is enriched in H2 and the WGS reactor may not be 

needed. The RME scrubber for tar abatement is used and afterwards, syngas is compressed before going to 

the PSA unit. As the PSA adsorbate is rich in CH4, this stream may go to a steam reformer to increase H2 

formation. As mentioned for the DFB gasification layout, part of the adsorbate may be used to produce energy 

for the steam reformer.  
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The main drawback of this SEG layout is the TRL (Technology Readiness Levels), which is lower than that of 

DFB gasification. Although SEG pilot-scale experiments have shown good results and operation, demonstration 

scale operation is still needed. The overall process chain of DFB has also a higher TRL than the SEG route. 

 

Figure 3: General layout of biomass SEG gasification to produce bio-H2. 

Other bio-H2 production routes from biomass gasification may be found suitable, though the TRL of some of the 

technologies are nowadays lower than those of previous routes. In Figure 4 is presented a concept based on 

hot gas conditioning. If DFB gasifier is not used, an oxygen stream will be needed. Thermal catalytic processes 

are used for gas cleaning and conditioning steps for tar abatement and nitrogen, sulphur and chlorine 

compounds removal. Different types of catalysts and sorbents may be used and in literature, there is much 

information about this subject (e.g., Din and Zainal, 2017). The number of operations depends on initial synthesis 

gas composition, the catalysts and conditions used in each process, and the specific requirements demanded 

by the catalyst used in the next operation. It needs to be kept to a minimum to decrease syngas thermal loss 

and reduce CAPEX and OPEX. Next, the steam reforming unit is important to convert hydrocarbons into H2, 

CO2 and CO. Further production of H2 is obtained in the WGS reactor. The product gas stream main content is 

H2 and CO2, with some contents of hydrocarbons and CO. After that, the gas is cooled down and compressed 

if it is introduced into a PSA unit. H2 could be separated by membranes instead of PSA, as syngas is at high 

temperature at this stage. Membranes usually work at lower pressure, but at higher temperatures; however, 

membranes TRL is lower. Marcantonio et al., 2019 compared PSA and palladium membrane performance and 

reported that hydrogen recovery ratio was around 28.9% higher for the palladium membrane in relation to the 

PSA configuration, though PSA economic viability was higher. 

 

Figure 4: General layout of concept based on syngas hot gas conditioning to produce Bio-H2. 

Many researchers have been studying different processes to obtain bio-H2 from biomass gasification, either 

using experimental installations or simulation studies, and have reported that biomass gasification is a good 

option to produce bio-H2. In general, life cycle assessment and techno-economic analyses have shown 

encouraging results, though many variables may compromise the overall viability of bio-H2 production via 

gasification. So far, the routes presented in Figure 2 and 3 seem to be more feasible, especially the DFB route, 

due to the higher TRL. However, these promising process routes have not yet been fully tested at demonstration 

scale and there are still some drawbacks and technological challenges that need to be overcome to increase 

the overall feasibility. Thus, political support and financial incentives are needed for the implementation of H2 

production through biomass gasification. 
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4. Conclusions 

Bio-H2 will be an important renewable secondary energy carrier in the near future and biomass/wastes 

gasification is a good option to produce it, being an alternative for future decarbonisation applications. Although 

some technologies are proven and available on the market for similar applications, namely syngas cleaning and 

conditioning, WGS, scrubbers and PSA units, there are still some drawbacks and technological challenges that 

need to be overcome to improve the overall bio-H2 production feasibility. 

Bio-H2 production route from biomass gasification depends on biomass type and composition, as it will affect 

syngas cleaning and upgrading. SEG and DFB gasification are good options for H2 production. SEG needs less 

operations than DFB, however SEG challenges are higher as SEG TRL is lower than DFB TRL.  

Demonstration of the full process chain for bio-H2 production from biomass gasification is still needed, especially 

for SEG. Thus, governmental support and subsidies will probably be necessary for the implementation of bio-

H2 production from biomass gasification to reach stable operation to market maturity.  
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