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Lignocellulosic materials can come from a variety of sources, including agro-industrial residues, and can serve 

as raw material to produce various chemical compounds. There is an appeal to produce bioplastics from 

lignocellulosic materials because they have similar applications and are biodegradable. For instance, the use of 

poly-lactic acid (PLA) has been encouraged to meet the demand for alternatives that reduce the environmental 

impacts caused by plastic waste. Before obtaining bioplastics, the lignocellulosic material (sugarcane bagasse) 

undergoes a pre-treatment process to make its constituents available (cellulose, hemicellulose, lignin and 

others). Thus, they can be fermented by producing microorganism. The supercritical technologies (such as H2O) 

in the pre-treatment and conversion of cellulose represents an alternative to conventional methods as they 

generate less waste. Given this scenario, this work aimed to study the production of PLA, derived from 

sugarcane bagasse constituents and fermentation by Bacillus coagulans to produce lactic acid (LA). Thus, the 

steps of supercritical pre-treatment, fermentation for LA production and polymerization (PLA production) in the 

Aspen Plus simulator were simulated. The results showed that it was possible to simulate all steps, a compatible 

route, being able to aggregate these processes in an ethanol production biorefinery. In this way, a strategy can 

be traced to conduct future simulations involving new scenarios. 

1. Introduction 

The use of plastic materials or non-biodegradable polymers has increased over the years in Brazil, a pace that 

recycling has not been able to keep up with. This results in a large volume of waste that accumulates, mainly, 

in landfills and that can generate environmental problems. The problem has worsened with the Covid-19 

pandemic, studies point to a reduction in the recycling of post-consumer plastic waste in 2020, when compared 

to 2019 (Abiplast, 2021). 

Another very positive point linked to the production of bioplastics is the use of residues of lignocellulosic 

materials as raw material to obtain the monomer, as seen in El-Sheshtawy et al. (2021), Derabli et al. (2022) 

and Yousuf et al. (2018). Cassava residue was used for LA production after enzymatic treatment by the action 

of microorganisms L. rhamnosus and B. coagulans (Chen et al., 2020). Rodrigues (2012) studied experimentally 

La production from hydrolysate obtained from steam exploded bagasse, resulting in a good productivity. 

LA is an important acid because it has countless applications in several industries. Literature shows some 

examples of LA production process modelling, as seen Dey and Pal (2013) that developed a model and 

simulation of continuous LA production from sugarcane juice in membrane integrated hybrid-reactor system. 

The steps leading up to the production of PLA represent a challenge on an industrial scale. Lopes et al. (2014) 

investigated the PLA production, aiming to reach a material for using as biomaterials in biomedical fields. The 

studies in this area are associated with the suitability of the process with possible scenarios that may result in 

higher production, minimization of environmental impacts or cost reduction, desirable characteristics, such as 

high molecular weight number (MWN), but PLA production is unlikely without an adequate project subsidized 

by simulators. 
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Process simulators can support prospect systems for scaling up, for example, simulate scenarios for hydrolysis, 

fermentation and polymerization. The feasibility of using lignocellulosic material with the release of its fractions 

by supercritical fluids can be investigated using simulators. A proof of this is the use of simulators for all these 

phases, as has been reported in Farías-Campomanes et al. (2013), Albarelli et al. (2018) and Pérez-Cisneros 

et al. (2015), but they are still scarce. 

The simulation of the LA production stage also reveals some barriers that still need to be studied, such as pH 

control during fermentation processing. Méndez-Alva et al. (2018) reported the implementation of a processing 

platform aided by simulations and analysis of a possible route for the industrial production of AL from sugar 

industry residues.  

The aims of this study are to reveal simulations using ASPEN Plus tools of the three steps: obtaining 

lignocellulosic fraction (from sugarcane bagasse) using supercritical water; fermentation of the lignocellulosic 

fraction to obtain LA; and polymerization of LA. To present the importance of connecting the different areas, 

such as engineering, chemistry and biotechnology, in order to achieve sustainable production and lead to 

important biorefinery related projects. 

2. Methodology 

A flowsheet of the system was developed using Aspen Plus v10.1. The steams are divided into liquids and 

solids and its representation, properly, it was used MIXCISLD steam class in simulator. The most chemical 

compounds used in this process were available in simulator database, such as water (H2O), but some needed 

to be specified, such as Cellulose ([C6H10O5]n) and hemicellulose ([C5H8O4]n).Many steps can be considered for 

lignocellulosic material under critical conditions to promote hydrolysis (Albarelli et al., 2013).There are many 

different mass composition (%) of sugarcane bagasse from the several sources, so it was considered for this 

study according to Silva et al. (2011), Table 1: 

Table 1: Chemical composition of raw sugarcane bagasse 

Composition  Raw sugarcane bagasse (%) 

Cellulose 42.8 

Hemicellulose 25.9 

Lignin 22.1 

Ashes 3.1 

Moisture 6.1 

 

It was considered conversion the lignocellulosic fraction into glycose and xylose, because of homofermentative 

considerations. 

2.1 Hydrolysis of lignocellulosic material in supercritical water 

The strategy proposed was to work with two reactors based on Zhao et al. (2011). For simulation, the sugarcane 

bagasse and water were pressurized up to the reactor pressure, thus the cellulose was dissolved and hydrolyzed 

in the first reactor. Main parameters used for simulation (this stage) were: operating temperature 380 ºC; 

operating pressure 220 bar; residence time 10 s, cellulose/glucose conversion 95% and hemicellulose/xylose 

conversion 95%. The mixture was cooled and taken to the second reactor to convert (from hydrolysis) 

oligosaccharides into hexoses. The parameters used were: operating temperature 240 ºC; operating pressure 

90 bar; residence time 50 s. The product was washed for the release of the total sugar and concentrated up in 

a multi-effect evaporation system before being sent to fermentation.These stages were summarized in Figure 

1.

Figure 1: First stage – hydrolysis supercritical water. 
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2.2 Fermentation of lignocellulosic fraction 

This stage represents the conversion of glycose and xylose (from hydrolyses) in LA. The microorganism 

considered was Bacillus coagulans because its production of LA (including L-isomers) is widely reported in the 

literature, such as Oliveira et al. (2019). For development of the simulation, it was needed to identify the main 

reactions on Aspen Plus. Some information are missing related to conversion parameters, so they were not 

considered in system.  

The fermenter was represented by stoichiometric reactor operating in ambient pressure and temperature 

controlled. The foot tub had 30 % in volume and the glycose and xylose conversion considered was 100% 

according to Rodrigues (2012). These stages were summarized in Figure 2. 

 

Figure 2: Second stage – Sugarcane bagasse hydrolyzed in Fermenter. 

2.3 LA Polymerization  

The process of LA polymerization was based on Martinez et al. (2011) and some points on Savioli et al. (2014). 

The system was divided in three stages for oligomers, lactide and poly-lactic acid (PLA) formation. First, the 

solution from the fermenter followed to oligomerization reactor where it was removed the water. The product 

was conducted to CSTR reactor and a distillation column to recycled lactic acid. It was used a stannous catalyst 

for dimer formation. This outflow was connected into a purification system (flash evaporator and distillation 

column), in order to separate the dimmer of the other products. There was a recycle for LA and water conducting 

to the oligomer formation stage. The lactide was polymerized to polylactide, resulting a mixture which was 

passed on to a multistage evaporation. Two separator blocks were utilized to discard the catalyst (considering 

the catalyst neutralization) and to achieve the purified PLA. These stages were summarized in Figure 3. 

 

 

Figure 3: Third stage – Sugarcane bagasse hydrolyzed in Fermenter. 

The objective of the Oligomerization process was to reach PLA oligomers of low molecular weight without 

catalyst. To achieve the highest mass flow of PLA, the reactor must be performed at vapor-liquid phase, 

temperature 201 ºC, pressure 2 atm, residence time 4 hr. 

3. Results 

3.1 Evaluation of biomass hydrolysis 

The bagasse stream pumped was heated to 100 ºC at a heat exchanger and sent to the hydrolysis reactor. The 

supercritical water inlet in the reactor is defined by the amount of water necessary to heat the biomass to the 

desired reactor temperature. The simulation showed that energetic consumption is high, requiring an extra heat. 

source. Other scenarios should be studied to enable, such as to simulate several processes together. 
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3.2 Fermentation system 

The fermentation process by Bacillus coagulans has active metabolic pathway from glycose and xylose in 

homofermentative way. Therefore, biomass hydrolysis using supercritical water to release the compounds can 

represent an interesting route when referring to industrial processes. It is important to highlight that this 

microorganism has high yield and productivity (100% conversion), moreover, without ethanol and acetic acid 

production (can be inhibitors). The temperature 52 ºC was acceptable for all sugar source conversion into lactic 

acid, using pressure1 atm. 

3.3 Polymerization System 

In the development of this simulation, the model used was step-growth to represent the polymerization, the 

package is available for several reactions. It This model generated a series of reactions based on functional 

groups. Thus, it was necessary to define the structures of the reactants in terms of nucleophilic and electrophilic, 

then the reactions were generated (Eq 1-12), assessing the possible routes in which the species can react. 

 

𝐿𝐴 + 𝐿𝐴 → 𝐻2𝑂 + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷)  (1) 

𝐿𝐴 + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) → 𝐻2𝑂 + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅)  (2) 

(𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + 𝐿𝐴 → 𝐻2𝑂 + (𝐿𝐴 − 𝑅) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷)  (3) 

(𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) → 𝐻2𝑂 + (𝐿𝐴 − 𝑅) + (𝐿𝐴 − 𝑅)  (4) 

𝐻2𝑂 + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) ↔ 𝐿𝐴 + 𝐿𝐴  (5) 

𝐻2𝑂 + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅) ↔ 𝐿𝐴 + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷)  (6) 

𝐻2𝑂 + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅) ↔ 𝐿𝐴 + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷)   (7) 

𝐻2𝑂 + (𝐿𝐴 − 𝑅) + (𝐿𝐴 − 𝑅) ↔ (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷)  (8) 

𝐿𝐴 + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅) → (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷)  (9) 

𝐿𝐴 + (𝐿𝐴 − 𝑅) + (𝐿𝐴 − 𝑅) → (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷)  (10) 

(𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) → (𝐿𝐴 − 𝑅) + (𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + 𝐿𝐴  (11) 

(𝐷 − 𝐿𝐴 − 𝐸𝑁𝐷) + (𝐿𝐴 − 𝑅) + (𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷) → (𝐿𝐴 − 𝑅) + (𝐿𝐴 − 𝑅) + 𝐿𝐴  (12) 

*(𝐿 − 𝐿𝐴 − 𝐸𝑁𝐷)-terminal segment L of lactic acid; (D-LA-END)- terminal segment D of lactic acid; (LA-R)-repetitive segment 

of lactic acid. 

 

This model showed direct (Eq 1-4 and 9-12) and reversible (Eq 5-8) reactions, as well as subsequent 

rearrangement reactions. This was possible because the reaction model uses database from types of segments 

to determine how polymerization reactions influence the properties of polymers such as degree of 

polymerization and Molecular Weight Number (MWN).It is important to emphasize that the nature of the models 

employed is stochastic and some kinetic parameters were implemented based on Seavey e Liu (2008). Other 

point, whether the LA concentration is very low, the reaction will be completed slowly and the MWN of PLA will 

be very high. Thus, whether the LA concentration and water amount are very high, it would be impossible to 

achieve a high PLA MWN.  
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Taking this information into account, it was used a stannous catalyst for obtaining PLA with high MWN. Table 2 

presents the main results of LA, lactide, water, PLA streams and MWN in each stage. 

Table 2: The main results of variables in PLA production 

Variables  Oligomer reactor Lactide reactor PLA reactor 

LA () 337.35 kg/h 572.61 kg/h 30.74 kg/h 

Lactide (kg/h) 0.0 kg/h 11,761.01 kg/h 1,596.11 kg/h 

Water (kg/h) 194.22 kg/h 515.87 kg/h 0.50 kg/h 

PLA (kg/h) 10,086.17 kg/h 97,228.58 kg/h 9,882.51 kg/h 

MWN  623.55  949.75 53,417.54 

*Corresponding values liquid phase 

 

The results of this system showed that it is possible to produce high PLA MWN. To obtain PLA with the desired 

characteristics, firstly, it was necessary to produce low PLA MWN and then lactide.  

This study clarified which directions new simulations should take from experimental data, establishing a path 

that still needs to be deepened for the real implementation of a biorefinery. It is important to emphasize that this 

study has a preliminary character based on some simulation and experimental works, more analyses must be 

done in new stages. 

4. Conclusions 

Simulations in commercial software (ASPEN Plus) of the production of PLA from the fermentation of La 

hydrolysate from sugarcane bagasse were verified to enable some stages of the biorefinery, mainly in 

conjunction with the production of ethanol. In the literature, there is no record of works dealing with the 

production of PLA from bagasse with supercritical treatment. Treatment of sugarcane bagasse with water under 

critical conditions (hydrolysis) was able to show that more research is needed in terms of evaluating other 

compounds such as arabinose formation and then directions of the separation process, for example membrane. 

It, also, was assessed the potential for homofermentative LA production from hydrolysed as substrates, which 

contain a mixture of sugars (glycose and xylose). Other simulations considering the acetic acid and ethanol 

production in fermenter, heterofermentative route, have an economic impact on the separation process. 

According to the results of LA polymerization, high value of PLA MWN (53,417.54) can be achieved, attracting 

interest for large-scale production due to the various applications of the polymer. 
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