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The most critical phases of plant operativity are the start-up and shutdown, which are usually implemented by 

following an experience-based sequential manual procedure. This work aims to develop an optimizing route for

the unsteady states of a chemical plant through non-derivative local minimization algorithms. The proposed

library for such development is NLopt, an open-source collection of optimization algorithms that can be 

implemented in C++ and Python languages. The definition of the problem followed a Monte Carlo initialization 

approach and optimization with a successive algorithm validation to test the optimizer potentiality. The case

studies implemented describe common units in chemical plants and show the prospects of the route for the

automation of such phases, in order to transform obsolete manual sequences into non-time-consuming and 

energy-saving routes to be implemented in plant activity. 

1. Introduction

In the field of chemical engineering, the relevance of optimal operativity conditions is crucial, due to the high 

costs of the equipment, raw materials, and manual work; the safety concerns and regulations that must be

followed to avoid dangerous situations, losses of money and operative time, energy consumption and 

environmental impact. Current applications focus on the steady phases of the process, leaving a big area for

improvement in the study of dynamic situations. In particular, the study of the start-up and shutdown of a plant 

is a fundamental step to prevent machinery failure and guarantee plant productivity. Currently, in literature, many 

foci on the usage of control system theory approaches, such as model predictive control (Larsson et al., 2013), 

fuzzy control logic (Ali and Abu Khalaf, 2003) and hybrid control systems (Verwijs et al., 1995), which require

high computational time due to the tuning requirement and complexity of the dynamic problem. This leaves a 

grey area for the development of optimized sequential procedures without the aid of control theory. 

 Problem’s definition 

The study focused on the development of an optimal routine for the time optimization of the start-up of chemical 

plants’ standard units. An objective function f(x) was developed for each case study, translating physical and 

safety constraints into equality h(x) and inequality constraints g(x), following the standard for the optimization 

problem, reported in (1). 

min
x0,…,xn

f(x) 

 h(x)=0  

g(x)≤0  

x=[x1,x2,…, xn]  ,  xi∈{0,100} (1)
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The problem is based upon n variables, which represent the discretization of a physical value over the time 

domain. In both cases analyzed in this work, such value is the opening percentage of a process valve for flowrate 

control.  

2. Materials and methods  

 Case studies  

Two chemical plants units were taken under study for the testing of the optimizer’s capability to find convergence 

for time-discretized models.  

 Methods  

The models of the units were based on mass and energy balances (2), and implemented as a set of differential 

equations over time to study the dynamics of the systems.  

∑ ṁi,in - ∑ ṁi,out +ṁgen=Acc. 

∑ (
1

2
ṁ v2+m ̇ gh+Ḣ)

i,in

 - ∑ (
1

2
m ̇ v2+m ̇ gh+Ḣ)

i,out

+ ∑ Qj +Ẇs=Acc 
(2) 

 

The PDEs were simplified through the help of the method of lines, which allowed reducing them to a set of ODEs 

by discretizing one of the partial derivates by finite differences, as shown in the set of equations in (3). 

∂Ci

∂t
=-

ν0∂Ci

∂V
+ri 

∂C

∂V
=

Ck+1-Ck

Vk+1-Vk
     , k=1,…,n  

(3) 

 

NLopt was chosen as the optimization tool, which is a free/open-source library for nonlinear optimization, 

providing one interface for several free optimization routines available online as well as original implementations 

of various other algorithms. It addresses general nonlinear optimization problems of the form (1). 

In order to feed an appropriate first guess to the optimizer, a Monte Carlo analysis was included. This technique 

relies on repeated random sampling to obtain numerical results (Kroese at al., 2014).  

 

 
 

Figure 1 - Problem's definition block scheme 

 

The algorithm’s performance was then evaluated through a benchmark study, through accuracy and robustness 

results. It was carried out by providing a comparison between the capability of the algorithm to converge to a 

minimum, how fast this was achieved, and which one would overall seem best suited for the problem. In terms 

of computational time invested the algorithms were tested to reach the optimal value for the same number of 

iterations allowable from the optimizer, as well as testing the accuracy towards the minimum convergence. 

 Tools 

As already stated, the problem was constructed in the high-level, general-purpose programming Python 

language, which provides a range class of free and open-source libraries. Between these, the SciPy was 

implemented for the differential system's resolution, both through the aid of the ‘solve_ivp’ function.  
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NLopt was set up according to the library’s requirements for algorithm choice, boundary conditions and tolerance 

for convergence, which are reported in Algorithm 1.  

 

Algorithm 1 NLopt Optimization  

1: initialization   

2: opt.nlopt.opt(nlopt.algorithm, n_steps) 

3: set lower bounds   

4:          set upper bounds 

5: set minimization of the objective function  

6: set of tolerance for the minimization  

7: x = opt.optimize(initial guess) 

3. Models  

 Atmospheric tank 

The first case taken under study was the emptying of a tank, in which the variable is the opening of the valve 

for the fluid exiting the vessel. The unit was modelled through a mass balance to obtain the liquid’s height profile 

over time. The velocity was expressed with Torricelli’s law for a fluid exiting a recipient in a uniform gravitational 

field. In this case, the goal was to minimize the overall time of emptying the tank, so the set-point was the level 

of the liquid in the tank equal to zero. The solver was given a goal to minimize the total time invested in emptying 

through the objective function expressed in (5). The function is solved over the whole time domain, rather than 

at every time step the function is the sum of each integrating time step until the set point is met.  

f(x)= ∑ dti

SP fulfilment

i=0

 (5) 

 Steam reforming reactor  

The second case study regards the warm start-up of a steam reforming unit, based on a manual procedure 

obtained from a biogas real plant reacting unit, Figure 3. In this case, the unit was studied to provide an 

automated sequential procedure, in the scenario of which a new catalyst is to be inserted as packing material 

into the reforming tubes. The overall goal was still to successfully bring the system to nominal conditions with 

the least amount of time invested. This was to be carried out following a group of set points, obtained from the 

physical constraints applied to the system. The most relevant one regards the time required for the system to 

maintain the steady-state conditions, set to 10 minutes for the case study.  

The case study's physical values were taken from previous work (Quirino et al., 2020), modelling the catalytic 

tubes inside the reformer as packed PFRs. The variables to be manipulated were the flow rates of water and 

methane fed to the steam reforming of the methane reactor, always through the percentage of valve opening.  

In this case, the approach that was taken involved a double optimization, to first find the optimal sequence to 

follow the precise procedure given, and an external optimization on the time interval upon which every controlled 

variable could spend, allowing to find the same trajectory within a shorter time, the overall scheme of the 

objective function setup can be found in Figure 2. To develop such procedure, two objective functions where 

here taken into consideration, rather than the single one for the first case study; both are reported in Figure 2. 

 

 
Figure 2 – Optimization route for the steam reformer case study  
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The first one stated as MSE (Minimum Squared Error), brings the system from the operating conditions to the 

required set points by minimizing the quadratic difference between the values of the methane and water 

flowrates (Fi) and the required flowrate values (Fsp).  

Afterwards, the second optimization routine is recalled, working on optimizing the overall time taken by the 

system to meet nominal operating conditions, similar to the one used for the first case study.  

Table 1 - Physical constraints of the system 

Physical 

constraint 

Value UoM 

S/C 3 - 

FH2O max 48 l/h 

FCH4 max 25 Nm3/h 

 

The physical constraints that allow optimal operativity and minimize risks are the steam-to-carbon ratio (S/C), 

for optimal productivity, and the maximum inlet flow rate’s consumption, given from the piece of equipment, 

these were implemented as numerical constraints to feed to the solver, values are reported in Table 1.  

 

 
Figure 3 - Startup of a reformer unit from real company procedure 

4. Results and discussion  

The results here discussed focus on the use of a non-derivative local minimum finding algorithm for the 

optimization of a non-linear objective function subject to linear constraints and its outcome.  

The main focus of the first case study was on the testing of the library's capability to solve the problem of the 

minimum time of emptying is trivial to obtain with a full opening of the valve. Monte Carlo’s results show already 

an initial guess very close to the solution. The optimizer tested successfully, in fact in  

Figure 5b the profile of emptying matches the wanted solution. Some limits can be found in the profile’s 

behaviour since once this had reached the set point required, the objective function isn’t able to give further 

information to the system. The algorithms’ comparison showed fast convergence for Powell’s based methods, 

COBYLA (Powell, 1994) and BOBYQA (Powell, 2009) and bad performance for Brent’s method PRAXIS 

(Richard, 2002). This brought to the conclusion that for this case the best compromise between all the aspects 

considered for the performance evaluation is the COBYLA algorithm.  

For the second case study, a reference for the required set points to be followed during the start-up procedure 

was provided from a biogas facility. The procedure’s profiles are reported in Figure 3. After the double 

optimization routine, the system shows good results in terms of total time spent by the system to reach the 

nominal operative conditions. The fundamental aspect to carry this optimization out was the decision of the 

constraints for the minimum time at which each set-point needed to be maintained. 

In this case, the Monte Carlo initialization verges from the optimal trajectory, due to the presence of the multiple 

set-points, but with a high number of runs and time discretization intervals, the method still provided a good 

starting point for the optimization. 

The algorithms behaviour was tested for the overall optimization of the two objective functions; having a limit 

within the library settings, the only algorithm to be able to receive equality and inequality constraints from the 

NLopt setup is the COBYLA, so to carry out the comparison between the class of algorithms the constraints had 

to be implemented within the objective function. Also, in this case, the BOBYQA and NEWOUA bound 
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(Powell,2004) provided good convergence after a number of iterations benchmark. The tradeoff between 

accuracy, convergence and CPU time invested pointed at BOBYQA as the optimal algorithm for this problem. 

 

 

Figure 4 - Algorithm’s performance analysis a) convergence capability for maximum iterations allowed to the 

solver; b) total CPU time for each set run with respect to the maximum number of iterations 

 

Figure 5 - Tank's optimization results a) Monte Carlo initialization profile compared to the ideal profile; b) Monte 

Carlo initialization valve openings; c) Optimal profile compared with the ideal one; d) Optimized valve opening 

5. Conclusions 

In conclusion, this study tried to provide a starting base for the study of optimization for unsteady phases of 

start-up and shutdown in industrial plants and their automation. The work provides an alternative approach to 

the obtaining of manual and sequential procedures currently followed by industrial companies, which require 

experimental knowledge for each unit. Through the aid of the open-source library NLopt, the algorithm is able 

to provide a sequence of action to bring the system close to nominal conditions.  

c) d) 

b) a) 
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The study has still room for further investigation, especially regarding the implementation of more complex 

process systems as well as the implementation of additional optimization tools, such as reinforcement learning 

algorithms, could be investigated.  

 

  

Figure 6 - Optimized profiles for reformer start-up procedure a) Flowrates profile; b) Valve opening requirement 

Nomenclature

 

Ci – ith component concentration, mol/m3 ri reaction rate, mol/m3/s  

g – gravity acceleration, m/s2 Q – heat exchanged in the system, J 

Ḣ – enthalpy of the system, J PDE – partial differential equation 

h –   height, m PFR – plug flow reactor 

ṁi – ith component mass flowrate, kg/s V – volume of the system, m3 

ṁgen – generation term kg/s v – velocity of the mass, m/s 

ODE – ordinary differential equation W – work consumed by the system, J 
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