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This work proposes, through simulations in the Matlab/Simulink software environment, a neural network 

predictive adaptive fuzzy control (NNPAFC) of a penicillin production process taking place in a batch-fed reactor. 

The results of such an implementation are presented and discussed. The outcomes of the simulations under 

realistic process control conditions confirm that this control strategy is, more than the others, a suitable strategy 

for the production of penicillin. This will ensure the production of high-quality penicillin and, at the same time, 

guarantee high production rates, maximizing penicillin yield, and minimizing waste of raw materials and 

production time.  

1.  Introduction  

Industrial fermentation employs microorganisms to produce valuable compounds on a large scale, offering 

benefits such as greater environmental sustainability compared to conventional chemical processes (Lee et al. 

2023). One of the most famous examples is the production of penicillin. This antibiotic, vital in the treatment of 

many diseases, is produced through the fermentation process using the Penicillium fungus. Discovered by 

Alexander Fleming in 1928, penicillin has been instrumental in treating a wide range of bacterial infections, 

saving countless lives and revolutionizing medicine. Its broad medical applications, from common infections to 

severe diseases, make it a cornerstone of antibiotic therapy. Penicillin's discovery paved the way for the 

development of numerous other antibiotics, shaping modern medicine and significantly impacting public health 

(Letek, 2023, Wilson, 2019). Beyond its medical importance, penicillin also finds applications in industrial 

processes, further underscoring its versatility and significance (Barresi, 2012).  

Overall, penicillin's production is a key contributor to the effective management of bacterial infections, playing a 

pivotal role in healthcare and public well-being.  The winning production strategy for penicillin production uses 

the fed-batch reactor (Liu, 2020; Mhaskar et al., 2018). It allows precise control of the nutrient concentration in 

the culture medium, manages biomass growth, and regulates the oxygen concentration to optimize growth 

conditions and production of penicillin-producing microorganisms. This approach leads to a higher production 

yield compared to other fermentation systems, ensuring an efficient and controlled process. Furthermore, the 

ability to gradually add nutrients during fermentation helps maintain optimal conditions for penicillin production.  

Unlike continuous processes, fed-batch reactors do not involve continuous removal, allowing the volume to 

steadily increase until reaching the maximum allowable limit or completing the biological process (Bolmanis et 

al., 2023; Lim and Shim, 2013). However, the dynamic and nonlinear characteristics of biological systems in 

fed-batch fermentation processes pose challenges for effective control.  

Liu and Gong (2016) explored systematically, the optimal controls under different mathematical models in 

fermentation processes. Brignoli et al. (2020) presented a novel feedforward-feedback controller logic to counter 

the problem of noise and oscillations in the control variable and to address the exponential growth dynamics 

more effectively. Duran-Villalobos et al. (2020) presented an advanced batch-to-batch optimization method 

designed to converge the yield toward a desired set-point over successive batches. Additionally, these authors 

introduced a new model predictive control technique to mitigate yield variability. Testing of this control method 
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on an industrial-scale fed-batch penicillin simulator showed improved yields compared to standard operation. A 

nonlinear model predictive controller (MPC) was implemented in a Penicillium chrysogenum fed-batch process 

by Kager et al. (2020). These authors compared the MPC to a PI(D) and an open loop feedback control scheme. 

The controllers were used to maintain predefined set-points of biomass-specific glucose uptake rates, product 

precursor, and nitrogen concentrations by manipulating the glucose, precursor, and nitrogen feeds. Kim et al. 

(2021) proposed a two-stage optimal control framework for a fed-batch bioreactor. The high-level controller is 

designed to derive the optimal feed trajectory, aiming to maximize both final time productivity and yield through 

the utilization of a nominal model. Conversely, the low-level controller is responsible for sustaining the high-level 

performance despite discrepancies between the model and the actual plant, as well as handling real-time 

disturbances. Chai et al. (2022) reviewed the application of MPC in different fermentation processes with 

different selections of the manipulated and controlled variables. Bolmanis et al. (2023) compared the most 

popular open- and closed-loop methods for substrate feed rate control in fed-batch fermentations. Rashedi et 

al. (2023) used a model predictive controller (MPC) to compute an optimal feeding strategy leading to maximized 

cell growth and metabolite production in fed-batch cell culture processes. The lack of high-fidelity physics-based 

models and the high complexity of cell culture processes motivated the authors to use machine learning 

algorithms in the forecast model. Jones et al. (2023) described the development of improved control strategies 

for the standard environmental conditions in a fed-batch bioreactor used for monoclonal antibody cell culture. 

An optimal control of a nonlinear state-dependent impulsive system in the fed-batch process was proposed by 

Liu et al. (2023). More recently Espinel‐Ríos et al. (2024) fused cybernetics with model-based optimization and 

predictive control for optimizing dynamic bioprocesses. These authors formulated a model-based optimal control 

problem to find the optimal process inputs, focusing on fed-batch processes, where the substrate feeding rate 

is an additional optimization variable.  

Penicillin fermentation typically occurs at temperatures between 25°C and 30°C. This is an optimal temperature 

range for the growth and production of penicillin by microorganisms, such as the fungus Penicillium 

chrysogenum, commonly used in the industrial production of penicillin.  

During fermentation, microorganisms metabolize the substrates present in the fermentation broth, producing 

energy in the form of heat. High metabolic activity can generate heat and increase the temperature inside the 

reactor. If the temperature increases significantly above the optimal range for penicillin fermentation, this can 

have several effects on the production and growth of microorganisms as: denaturation of proteins, inhibition of 

microbial growth (reducing the total amount of penicillin produced), changes in product composition (leading to 

a production of unwanted metabolites or a reduction in penicillin yield), and contamination risks (high 

temperatures can encourage the growth of unwanted microorganisms or contaminants in the reactor, 

compromising the purity of the final product).  

Methods for controlling temperature include the use of heating or cooling systems such as heat exchangers, 

cooling or heating tanks, and thermostats. Automation via temperature sensors and control systems allows for 

continuous temperature monitoring and rapid adjustment to maintain optimal conditions throughout the entire 

fermentation process. 

2. Materials and methods 

2.1 Fed-batch fermenter model  

The authors adopt here the mathematical model proposed by Birol et al. (2002) for the temperature control 

of the fed-batch reactor in which penicillin production takes place. The proposed model constitutes an 

extension of the Bajpai and Reuss (1980) model, which previously demonstrated good agreement with 

experimental results. The mathematical model, although not recent, is sufficiently detailed to still be used 

today as a test bed for various applications. It is fundamentally based on the nine differential equations that 

follow: the biomass (X) growth rate (eq.1), the production of penicillin (P) (eq.2), the substrate glucose and 

dissolved oxygen balances (eqs.3,4) in terms of their concentrations (S) and CL, respectively, the volume (V) 

balance (eq.5), the relation between the hydrogen ion concentration [𝐻+] and the biomass formation (eq.6), 

the volumetric heat production rate (Qrxn) (eq.7), the energy balance (eq.8) giving the temperature (T) 

evolution, and the generation of carbon dioxide CO2 (eq.9).  
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For details, numerical values, and algebraic expressions of the parameters, please refer to Birol et al. (2022).  

In this work, the issue of temperature control of the penicillin fermentation process, which takes place in a well-

mixed fed-batch reactor, will be addressed.  

 

2.2 Control strategy 

The above mathematical model was implemented as an object-oriented software code in Simulink.  

First, an open loop simulation of the fed-batch reactor was run. The time evolution of temperature in the well-

mixed reactor is reported in Figure 1 under the dynamic situation typical of a fed-batch operation started at 

ambient temperature (Tf = 297 K).  

 
Figure.1 Temperature evolution of the open loop system (fed-batch reactor) as a function of time.  

 

As can easily be seen from Figure 1, the absence of a reactor temperature control system leads to a monotonic 

increase in temperature, even far beyond the optimal operating range, with all the negative consequences that 

this entails. It is therefore necessary to act with a valid and effective control action. 

The control system was implemented in Simulink, using fuzzy logic control systems and the Neural Network 

Predictive Controller (NNPC). NNPC is a type of advanced controller used in a wide range of applications, from 

manufacturing industries to robotics to chemical process control. Its peculiarity lies in the use of artificial neural 

networks to model and predict the dynamic behavior of the system to be controlled, allowing more precise and 

dynamic regulation compared to traditional control methods.  

When implemented in Simulink, NNPC leverages the power of the software for simulating dynamic systems and 

interfacing with trained neural networks. Initially, it is necessary to acquire data from the system to be controlled 

for training the artificial neuron model. This can be done by simulating the system (see Figure 2) or using real 

experimental data. In this case, the training of the NNPC occurs by taking the model of the uncontrolled system 

as a reference and considering the seventh input of the system, the feed rate Fc of the cooling fluid, as input 

and the eighth output of the system, the temperature T inside the reactor, as output (eq. 8). Once the neural 

network has been trained, it can be integrated within the Simulink simulator to train the predictive controller. As 

typical of MPC, the controller uses the neural network to predict the future behavior of the system based on 

current conditions and possible control actions. In Simulink, the NNPC is typically implemented as a control 

block (Figure 3A) that accepts as input the outputs of the system on which control is exercised and the related 

setpoint and returns the control actions (via manipulation variable) to be applied to the system. NNPC offers 
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several advantages over traditional control methods. It can manage non-linear and complex systems with 

greater effectiveness ensuring optimal performance even in the face of unexpected changes.  

 
Figure.2. Graphical interface that shows the generation of data useful for training the neural network. 

 
Figure.3. Neural Network Predictive Controller: A) Simulink block. B) graphical user interface.  

 

 The Block diagram proposed by the Authors for the MPC architecture of the fed-batch penicillin production 

process is shown in Figure 4. The chosen manipulation variable is the feed rate Fc of the cooling fluid, entering 

the energy balance (eq.8). As shown in the block diagram (Figure 4), the predictive neural control does not act 

autonomously, but in synergy with the fuzzy controller. Its role is to suitably modify the action of the fuzzy 

controller, adapting it appropriately. Therefore, the input signal to the fed-batch system will be that of the 

manipulation variable adapted by the action of the neural network predictive controller. 

 

 
Figure.4 Block diagram of the control process.  

3. Results 

The results of some simulations obtained first at a constant set-point and then at a variable set-point are shown 

in the following. Figure 5 shows the temperature evolution over time for the system controlled by FLC and 

NNPAFC for a fed-batch operation started at Tf = 295 K. The set-point is set at 298 K. 

 
Figure.5 Temperature evolution of the system controlled by FLC and NNPAFC as a function of time with a 

constant set point = 298 K.  
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It is clear how the control system can maintain, in both cases, the desired value, avoiding that increase in 

temperature that the system foresees due to the metabolic actions of microorganisms, but the addition of the 

neural network predictive adaptive system to the fuzzy control brings benefits in terms of performance. In fact, 

in this case the system reaches the setpoint value a little earlier, with less overshoot than its non-adaptive 

counterpart. Given this, in the following two simulations only the performance of the system controlled by 

NNPAFC for step variations of the set point will be shown. The initial performance of the control system can be 

easily improved by modifying either the Control Weighting Factor (see Figure 3B) or the multiplicative constant 

K (see Figure 4). Figure 6 shows the trend of the controlled system when there is a descending step in the set-

point, precisely from 298 to 296 K at time t = 20 hr.  

   
Figure.6 Temperature evolution of the system controlled by NNPAFC as a function of time with a step in the set 

point from 298 to 296 K at t = 20 hr.  

 

Figure 7 shows the performance of the controlled system when there is an ascending step in the set-point, 

precisely from 298 to 300 K at time t= 20 hr. In both cases the fed-batch operation started at Tf = 297 K and the 

control system proves to be fast in response time and effective in limiting any underdamped oscillation. 

 
Figure.7 Temperature evolution of the system controlled by NNPAFC as a function of time with a step in the set 

point from 298 to 300 K at t = 20 hr.  

4. Conclusions 

 The article presents an innovative neural network predictive adaptive fuzzy control scheme tested to regulate 

the temperature in a fed-batch reactor used in penicillin production. Simulation results show promising 

improvements in system performance compared to traditional fuzzy control methods. The proposed controller 

guarantees precise and rapid regulation of the process temperature. This translates into greater production 

efficiency and better quality of the final product. Furthermore, the promising outcomes attained in temperature 

regulation lay a solid foundation for contemplating the extension of this sophisticated control scheme to address 

the non-linear pH control within the fed-batch reactor system. Such an extension holds the promise of unlocking 

further optimization opportunities, thereby fostering greater reliability, sustainability, and competitiveness in 

pharmaceutical manufacturing processes. The successful adaptation of this methodology could potentially yield 

far-reaching benefits, including improved process stability, reduced variability, and enhanced control over critical 

parameters, contributing to the overall advancement of pharmaceutical production methodologies. The authors' 
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next objective will be to verify the robustness of the proposed control system (and extended to pH control), 

evaluating how it behaves in the face of disturbances, uncertainties, and variations in the model parameters. 

Only after assessing its robustness it will be possible to test its effectiveness directly on a real system. 
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