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Hydrothermal Carbonization (HTC) represents a promising green technology for converting various biomass 

feedstocks into valuable hydrochar and liquid products. In this study, the HTC process of Myriophyllum 

aquaticum Verd., highly diffused in Tuscany (Italy), was investigated varying the process temperatures and the 

holding times. Indeed, it is one of the world's most troublesome invasive aquatic weeds, impacting not only the 

quality of water but also contributing to habitat deterioration; therefore, several management practices are 

required to address the problem. This research focused on obtaining preliminary experimental data to be further 

implemented in a lumped kinetic model to elucidate the reaction pathways leading to the formation of primary 

hydrochar and liquid compounds responsible for secondary hydrochar production. To figure out the HTC liquid 

phase composition and the organic compounds responsible for secondary hydrochar formation, the High-

Performance Liquid Chromatography (HPLC) analytical technique was employed. This technique allowed to 

identify and quantify some of key chemical components present in the HTC liquid phase, i.e., sugars and furans. 

Moreover, the future integration of a lumped kinetic model and advanced analytical techniques not only will 

enhance the understanding of the Myriophyllum aquaticum HTC process but will also provide valuable insights 

into the optimization of HTC conditions for biomass conversion and resource recovery. 

1. Introduction 

Biological invasions are widely recognized as a significant contributor to biodiversity loss. In the context of 

freshwater ecosystems, Invasive Aquatic Plants (IAP) have become a focal point of concern. The unique 

characteristics of inland waters, including internal connectivity, high seasonal and spatial variability, and 

extensive shorelines interfacing with terrestrial ecosystems, render them particularly susceptible to IAP 

invasions. The challenges posed by IAP extend to conservationists and managers, as these plants inflict 

considerable damage on freshwater environments. Their impact includes an elevated risk of flooding due to 

dense plant occupation of riverbeds, physicochemical consequences such as oxygen depletion in densely 

vegetated areas, and adverse effects on aquatic fauna and native plants through resource competition. 

Furthermore, IAP create complications for various water-related activities such as drainage, and irrigation. 

Specifically, species like Ludwigia grandiflora, Myriophyllum aquaticum, and Egeria densa form dense 

monospecific stands, impeding water movement, trapping sediment, and inducing fluctuations that degrade 

water quality. In Europe, predominant management techniques involve mechanical harvesting and the 

introduction of grass carp, that is also employed to control native plants. Herbicide use against IAP is observed 

in some European countries, although restrictions often apply (Weidlich et al., 2020). North America and 

Australia have explored biological control programs utilizing both exotic and native organisms. However, 

attention and resources predominantly focus on specific approaches, namely grass carp (Ctenopharyngodon 

idella) and introduced insects. Researchers utilize such wastes to reduce or eliminate the above pollutants as a 

precursor for developing biochar and other by-products with added value. Different from the pyrochar, produced 

at 300–1200 °C with a pre-drying process of biomass in an inert atmosphere, the hydrochar is the solid product 

from hydrothermal carbonization (HTC) of biomass at 180–375 °C obtained in an aqueous phase. Compared 

with pyrochar, hydrochar is characterized by lower cost and higher yield, benefiting the large-scale application 

(Volpe et al., 2017).  
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The hydrothermal degradation leads to the following products: solid hydrochar, liquid bio-oil, and gases. 

Hydrochar is the most preferred end-product due to its versatile and adaptive range of applications. Hydrochar 

exhibits hydrophobic properties, that are better than the starting feedstock in terms of mass and energy density, 

and combustion performance. The fundamental idea of converting biomass into energy-rich solid fuel is to 

extract the maximum possible carbon content in the feedstock in its solid form. According to Poomsawat et al. 

(2021), for the water hyacinth, treated under HTC, the fixed carbon increased upon temperature increase; i.e.: 

it ranged from 8.88wt% at 180 °C up to 26.06wt% at 220 °C. Gao et al. (2013) treated the water hyacinth for 30 

minutes at 240 °C: the % of carbon recovered was equal to 44.26 and its lower heating value (LHV) equal to 

16.83 MJ/kg. The dominant form of the product is determined by various process conditions such as 

temperature, holding times, and heating rate, with reactor pressure typically being autogenic and not specifically 

set (Huang et al., 2022). Myriophyllum aquaticum, among other important aquatic plants (IAP), falls into the 

category of lignocellulosic biomass, containing varying proportions of cellulose, hemicellulose, and lignin. 

Cellulose, organized into fibers and held together by hydrogen bonds, undergoes degradation primarily through 

hydrolysis reactions at temperatures exceeding 200°C. This process yields oligomers that further decompose 

into glucose and fructose, undergoing subsequent dehydration, fragmentation, and isomerization, ultimately 

leading to C–C bond breakage. Furfural and its derivatives are produced, undergoing polymerization and 

reverse aldol condensation, serving as valuable feedstocks for biodiesel and chemical production. Additionally, 

the degradation process generates propanoic, lactic, acetic, and formic acids, consequently lowering the 

medium's pH. Hemicellulose dissolves at 180°C, with shorter residence times resulting in higher solid hydrochar 

content and vice versa. Prolonged residence times facilitate the polymerization of liquid-phase fragments, 

yielding secondary hydrochar with a polyaromatic structure. The formation of secondary hydrochar, dependent 

on residence time, enhances the thermal stability of the produced hydrochar in lignocellulosic biomass. In 

summary, hydrochar formation occurs through two pathways: the first involves the collapse of cellulose and 

hemicellulose under subcritical conditions, leading to primary hydrochar formation, while the second pathway 

results from polymerization of released molecules in the fluid phase (Borrero-López et al., 2018). Therefore, the 

primary objective of this study is to utilize the HTC process for the treatment of Myriophyllum aquaticum and 

unravel the reaction pathway leading to hydrochar formation. In pursuit of this goal, two temperature values (200 

and 260 °C) and various reaction times (0, 30, 60, and 120 minutes from the set point) will be tested to obtain 

preliminary data and, consequently, figure out process and analysis feasibility. Employing a direct quenching 

method using cold water, the reactions will be interrupted at different specified intervals. The resulting aqueous 

phase will undergo analysis through HPLC to identify soluble intermediates in the aqueous medium responsible 

for the formation of secondary hydrochar. The results will enable to understand how the HTC process conditions 

affect the formation of intermediate compounds in the aqueous solution and, consequently, the formation of 

secondary char. 

2. Materials and Methods 

Myriophyllum aquaticum 

Myriophyllum aquaticum (Figure 1) was provided by Department of Agricultural, Food and Agro-environmental 

Sciences of University of Pisa, that previously collected the plant from Barra-Barretta Channel. The sample was 

washed, dried, and then milled using a Retsch SM 100 cutting mill, to reduce the dimensions below 1 mm.  

 

Figure 1: Myriophyllum aquaticum collected from Barra-Barretta channel. 
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Hydrothermal carbonization experiments 

Hydrothermal carbonization experiments were conducted using a 300 mL AISI 316 stainless-steel PARR 4566 

reactor, that was outfitted with a mechanical agitator, an electric heating system, a thermocouple, a pressure 

gauge, and a pressure transducer (refer to Figure 2). Control over reactor temperature was maintained using a 

Parr 4848 Process Controller. The experiments involved varying reaction temperatures (200 and 260 °C), 

reaction durations (0-120 minutes), while keeping the solid content constant at 25 wt% for each trial. At specific 

intervals (0, 30, 60, and 120 minutes from achieving steady state conditions), the reaction was quenched using 

a cold water bath set at 4 °C. Prior to each experiment, the milled sample was mixed with water to achieve the 

desired solid content. Upon completion of the HTC test, the mixture of solid and liquid products was recovered 

from the reactor vessel, and the solid fraction was separated via vacuum filtration. The resulting solid product, 

referred to as hydrochar, was then dried at 105 °C for 12 hours, weighed, and stored for subsequent 

characterization. 

 

Figure 2: HTC experimental set-up. 

HPLC analysis 

The filtrated liquid fraction underwent analysis using High Performance Liquid Chromatography (HPLC). The 

HPLC analysis was performed utilizing an Agilent 1100 Series analyzer comprising a G1329A autosampler, a 

G1365A multi-wavelength diode detector (DAD), a G1316A column oven set at 30°C, and a Pursuit C-18 

column. The mobile phase consisted of a mixture of water and acetonitrile (90:10 %v/v), maintained for 15 

minutes. A flow rate of 1 mL/min and an injection volume of 5 μL were employed. Wavelengths of 200 and 275 

nm were monitored. Compound identification utilized commercially available pure substances. Retention times 

for specific compounds were as follows: furfural (5 min), 5-hydroxymethylfurfural (3.6 min), and fructose (1.88 

min). External calibration was conducted for each compound to facilitate quantification. 

3. Results and Discussion 

A closer look at the selected compounds reveals concentrations individually varying with process severity (in 

terms of temperature and time). Figure 3a, 3b and 3c show, respectively, the contents of fructose, furfural and 

5-hydroxy-methylfurfural (HMF), known as key HTC intermediates at the respective process temperatures (200 

and 260 °C) after 0, 30, 60 and 120 minutes of process duration. 

The obtained concentration trend of these compounds, varying HTC process conditions, shows the formation 

of fructose, furfural and 5-HMF after hydrolysis of cellulose and hemicellulose and dehydration of the resulting 

hexoses and pentoses, followed by a decrease, due to the transformation of oligomeric species into 

carbonaceous compounds as proposed by the literature (Bevan et al., 2023; Borrero-López et al., 2018). In 

particular, Figure 3a shows the trend of fructose concentration upon the variation of holding time and 

temperature: at 200 °C the concentration achieves its maximum value after 60 minutes of steady state; at 260 

°C it remains almost constant for each tested time. At 200 °C, the furfural concentration follows a trend similar 

to fructose, whereas, at 260 °C, in the first 30 minutes, the concentration increases before reaching an 

asymptotic value (Figure 3b). At 260 °C, only 5-HMF concentration shows an increasing trend upon the increase 

of reaction time.  

Concentration measurements, recorded at 200°C, are in accordance with literature data. Initially, intermediate 

compounds in the solution exhibit an increase with increased holding time, followed by condensation and 

polymerization processes that result in the formation of hydrochar, consequently reducing their concentration 

(Reza et al., 2013). However, at higher temperatures, the concentration values demonstrate an upward trend, 
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reaching a constant value. These trends can be elucidated considering that, according to the literature 

investigation (Lucian et al., 2018), larger quantities of furfurals are extracted from the char at more harsh 

carbonization conditions (i.e., T=260 °C), suggesting that part of these components may re-condense into the 

primary solid char as “coal-like” carbon spheres and part of them remain stable in the aqueous solution. 

  

Figure 3: a) Fructose concentration trend at 200 °C (blue line) and 260 °C (red line); b) Furfural concentration 

trend at 200 °C (blue line) and 260 °C (red line); c) 5-HMF concentration trend at 200 °C (blue line) and 260 °C 

(red line). 

The amounts of solid recovered by the end of the process are reported in Table 1. 

Table 1: Hydrochar yields values obtained at different process temperature (T=200 and T=260 °C) and at 

different holding times (t=0, t=30, t=60 and t=120 min) for each T. 

Temperature [°C] 200 260 

Time [min] 0 30 60 120 0 30 60 120 

Hydrochar yield [%] 55.7 54.9 53.7 57.3 42.1 41.8 46.5 40.4 

 

Based on the findings of Barontini et al. (2023), it is evident that reaction temperature plays a significant role in 

both solid yield and energy densification. Specifically, higher temperatures in hydrothermal conditions lead to 

the carbonization of biomass polymers, resulting in their breakdown into the aqueous phase. Consequently, 

there is an expected loss of mass due to the solubilization of reaction intermediates and inorganic components 

into the liquid medium. Additionally, a minor decrease in solid mass content occurs due to the release of carbon 

dioxide through decarboxylation reactions in the gaseous phase. This decline in solid mass content is observed 

with increasing temperature. Moreover, the results reported in the current study are in line with a previous work 

carried out on aquatic biomass (Poomsawat et al., 2021): the hydrochar yield ranged from 50 down to 40 % 

upon temperature increase from 200 up to 220 °C. The pH values are reported in Table 2. 
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Table 2: pH values obtained at different process temperature (T=200 and T=260 °C) and at different holding 

times (t=0, t=30, t=60 and t=120 min) for each T. 

Temperature [°C] 200 260 

Time [min] 0 30 60 120 0 30 60 120 

pH 4.8 4.7 4.7 4.8 5.1 5.5 5.5 5.6 

 

The pH remains almost constant, because the holding times are short to appreciate significant changes as 

reported in (Borrero-López et al., 2018). However, the increase in pH, for higher temperature (260 °C), could be 

due to the condensation and polymerization of organic acids in the aqueous solution (Reza et al., 2013). 

The HPLC analysis allowed to identify the main conversion pathway of cellulose and hemicellulose during HTC 

process. This pathway is reported in Figure 4, where the black line denotes the reaction pathway of primary 

hydrochar and the green line shows the reaction pathways of intermediate compound formation. 

 

 

Figure 4: Reaction pathway of HTC process. Black lines (R4-R5) indicate the degradation reactions involving 

cellulose/hemicellulose and lignin that lead to primary hydrochar formation; green lines (R1-R2-R3) indicate the 

degradation reactions of cellulose/hemicellulose that lead to intermediate compounds production (those 

analysed in this study have been underlined in violet) and then to secondary hydrochar formation. 

The reaction pathways of the HTC process are schematically described by a global component model 

(hemicellulose, cellulose, and lignin), in which the initial raw material is converted into intermediates up to the 

final products in different steps (Figure 4). Consequently, the intermediate products of cellulose and 

hemicellulose degradation can be grouped to better evaluate each group’s formation kinetics (as reported in 

Figure 4). Indeed, glucose and fructose can be gathered as total sugar (products of R1); furfural and 5-HMF can 

be grouped as furans (products of R2). These reaction products have already been evaluated through HPLC 

analysis. To mathematically evaluate the proposed scheme, the reactions set (i.e., R1-R5) can be described as 

reported in the Eq. (1-5). 

 

𝑑𝐶𝑐−𝐻

𝑑𝑡
=  −𝑘1𝐶𝑐−𝐻

𝑛1 − 𝑘4𝐶𝐶−𝐻
𝑛4 

 
(1) 

𝑑𝐶𝑠𝑢𝑔𝑎𝑟𝑠

𝑑𝑡
=  𝑘1𝐶𝑐−𝐻

𝑛1 − 𝑘2𝐶𝑠𝑢𝑔𝑎𝑟𝑠
𝑛2 

 
(2) 

𝑑𝐶𝑓𝑢𝑟𝑎𝑛𝑠

𝑑𝑡
=  𝑘2𝐶𝑠𝑢𝑔𝑎𝑟𝑠

𝑛2 − 𝑘3𝐶𝑓𝑢𝑟𝑎𝑛𝑠
𝑛3 

 
(3) 

𝑑𝐶𝑠−𝐻𝐶

𝑑𝑡
=  𝑘3𝐶𝑓𝑢𝑟𝑎𝑛𝑠

𝑛3 
 

(4) 

𝑑𝐶𝑃−𝐻𝐶

𝑑𝑡
=  𝑘4𝐶𝑐−𝐻

𝑛4 + 𝑘5𝐶𝑙𝑖𝑔𝑛𝑖𝑛
𝑛5 

 

 

(5) 

545



Where k1-k5 of R1-R5 indicate the kinetic rate constants, 𝐶𝑐−𝐻, 𝐶𝑠𝑢𝑔𝑎𝑟𝑠, 𝐶𝑓𝑢𝑟𝑎𝑛𝑠, 𝐶𝑙𝑖𝑔𝑛𝑖𝑛 , 𝐶𝑠−𝐻𝐶 , 𝐶𝑃−𝐻𝐶  show the 

concentrations of cellulose (C) and hemicellulose (H), sugars, furans, lignin, secondary hydrochar and primary 

hydrochar, respectively, whereas, 𝑛1 − 𝑛5  refer to each kinetic reaction order. This system can be considered 

as starting point for future modeling approaches, aimed to optimize the future operative conditions.  

4. Conclusions and future perspectives 

Myriophyllum aquaticum has been successfully processed using HTC process. The aqueous solution obtained 

after direct quench, for different holding times and temperatures, have been analyzed through HPLC equipment. 

In particular, HPLC analyses have been pointed out to identify and quantify each intermediate compound 

concentrations responsible of secondary char formation. We stress that the obtained results are preliminary to 

a more in-depth experimental analysis in which different operative conditions will be tested for a more thorough 

assessment of the biomass behavior in the HTC process. Moreover, it has been possible to figure out the 

reaction pathways and the respective kinetic equations. This will also play a key role in a future modeling 

approach where the reaction kinetics will be implemented in Python. A further minimization of an error metric 

with experimental data will provide validation of the model and thus the values for pseudo-intrinsic factors (i.e., 

pre-exponential factor and activation energy), for each reaction.  
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