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This research introduces a numerical approach for constructing a viscosity model, utilizing the power law model 

to illustrate the behavior of shear–thinning fluids in relation to fluid flow parameters. The developed viscosity 

model was integrated into a Computational Fluid Dynamics (CFD) tool and its performance was assessed by 

comparing predictions with experimental data from literature, as well as with various viscosity models such as 

power law, Sisko, Cross power law, and Bird–Carreau viscosity models. The results, along with the additional 

correlation obtained from a 100:1 planar channel flow simulation, demonstrated stability and efficiency. 

1. Introduction 

Non–Newtonian fluids are frequently encountered in various aspects of our daily lives, including personal care 

and cosmetic products, lubricating oils, polymer melts, and even the blood in our bodies, among others. The 

distinctive characteristic of these fluids is their viscosity, which changes in response to applied shear rate or 

shear stress. This behavior significantly influences processing operations and transportation in numerous 

applications, often serving as a pivotal factor in production efficiency and the final product's quality. Therefore, 

a comprehensive understanding of these intricate fluid properties is essential and holds fundamental importance 

in industrial sectors. Numerous studies in the literature focus on experimental and/or numerical analyses of 

non–Newtonian characteristics and fluid flows. These studies provide insights into the properties of fluids, which 

are influenced by shear rate and can be effectively described using various rheological models. One of the 

widely employed simplified models in specific types of research is the Ostwald–de Waele’s relation (Ostwald, 

1929), also known as the power law model. It is important to note that the power law model has limitations, 

specifically being valid over only a limited range of shear rates. Consequently, alternative models have been 

developed to address this limitation and provide accurate representations of fluid behavior across the entire 

range of shear rates such as Carreau–Yasuda model (Yasuda et al., 1981), Herschel–Bulkley model (Herschel 

and Bulkley, 1926), Bingham model (Bingham, 1922), among others. Despite extensive modeling of non–

Newtonian phenomena, a clear explanation for the evolution of viscosity, considering flow characteristics (𝑛, 𝐾, 

and 𝛾̇), from the initial stages through a vast range of the flow shear rate remains elusive. In light of this situation, 

modifying the viscosity model for non–Newtonian fluids, with a particular emphasis on shear–thinning behavior, 

emerges as a pertinent issue. Such modification holds the potential to elucidate the true nature of this fluid 

characteristic, offering a more accurate depiction of its behavior. This is the first of a set of papers aiming to 

develop a viscosity model for non–Newtonian fluids, specifically focusing on shear–thinning fluids. The proposed 

numerical methodology is based on the power law model. Leveraging advancements in computational power, 

the model's performance was rigorously assessed by comparing its predictions with both experimental and 

numerical data drawn from existing literature. The evaluation is carried out within the context of analyzing a 

100:1 planar channel flow, employing OpenFOAM® for Computational Fluid Dynamics (CFD). 

2. Methodology  

This section presents the mathematical formulation and the fundamental concepts associated with the newly 

developed viscosity model. 

619



2.1 Governing equations 

The internal flow of non–Newtonian fluids, assumed to be isothermal and incompressible, is carried out with the 

mass conservation (continuity): 

∇ ⋅ (𝒖)  =  0 (1) 

and momentum conservation: 

𝜕(𝜌𝒖)

𝜕𝑡
 +  𝛻 ⋅ (𝜌𝒖𝒖)  =  −𝛻𝑝 +  𝛻 ⋅ 𝝉 (2) 

in the above equations 𝜌 is the density of the fluid, 𝒖 is the velocity vector, 𝑝 is the pressure, and 𝝉 is the stress 

tensor or shear stress which is defined by 

𝝉 =  2𝜂𝐃 (3) 

where 𝜂 is the dynamic viscosity of fluid and 𝐃 is the symmetric rate of strain tensor given by 

𝐃 =  
1

2
[ ∇𝒖 +  (∇𝒖)T ]. (4) 

The expression for 𝝉 relies on inelastic non–Newtonian constitutive models, primarily characterized by viscosity 

and yield stress models. Table 1 displays commonly used viscosity models for non–Newtonian behavior, all of 

which are well–established and widely employed in the literature. Further details on these models and their 

parameters are available in numerous rheology publications. 

Table 1: Commonly used viscosity models for non–Newtonian behavior. 

Model name Equation 

Power law (Ostwald–de Waele relation) 𝜂 =  𝐾𝛾̇𝑛−1 

Sisko (Sisko, 1958) 𝜂 =  𝐾𝛾̇𝑛−1  +  𝜂∞ 

Cross power law (Cross, 1965) 𝜂 =  𝜂∞  +  [
(𝜂0 − 𝜂∞)

1 + (𝑚𝛾̇)𝑛 
] 

Bird–Carreau (Bird and Carreau, 1968) 𝜂 =  𝜂∞  +  (𝜂0 − 𝜂∞)[1 + (𝑘𝛾̇)2]
(𝑛−1)
2  

2.2 Modification of viscosity model 

Shear–thinning or pseudo–plastic fluids, characterized by a decrease in viscosity with increasing shear stress, 

represent the most common type of non–Newtonian behavior. The primary focus of developing the viscosity 

model in this study was centered around a range of power law numbers (𝑛) that induce shear–thinning behavior. 

This can be obtained by starting from the relationship between shear rate and the fluid's viscosity at the onset 

of flow can be expressed as 𝛾̇  →  0 ∶  𝜂 →  𝜇0 and when the flow reaches a high shear rate 𝛾̇  →  ∞ ∶   𝜂 →  𝜇∞. 

An infinite viscosity (𝜇∞) can be related to the initial viscosity (𝜇0) via the relation: 

𝜇∞ =  
𝐾∗𝜇0
1 + 𝐾∗ (5) 

where 𝐾∗ is called the modified consistency index of 𝐾 in a sense of the path function of 𝜇0 as 

𝐾∗ =   (
𝐾

𝜇0
 −  𝜃𝜆𝑛−1) 𝛾̇𝑛−1 (6) 

where 𝜆 is a time constant with 𝜃 being its scale factor. Then a new dynamic viscosity is now proposed by 

𝜂(𝛾̇)  =  
𝜇0

1 + [
1

𝐾∗  +  (𝜆|𝛾̇|)𝑛−1
]
. 

(7) 

Due to the lower limit of Newtonian fluids, the parameter Ω is also required and Eq (6) finally becomes 

𝜂(𝛾̇)  =  
Ω 𝜇0

1 + [
1

𝐾∗  +  (𝜆|𝛾̇|)𝑛−1
]
 

(8) 

where  
Ω ≡  

𝐾∗ +  2

𝐾∗ +  1
. 
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2.3 Geometry and flow conditions 

To provide the fully developed length and the required flow rates for the entire study, a 2D planar channel with 

an aspect ratio of 100:1 was selected as the test geometry (Figure 1). A uniform velocity " U " is assigned at the 

entrance, with the absence of all other variables. Zero axial gradients are applied to all variables at the exit, 

except for the pressure, which is set to zero. At the wall, the no–slip boundary condition is used, along with 

symmetry at the centerline of the domain. 

 

Figure 1: Schematic of computational domain and boundary conditions. 

The system was discretized using the finite volume method. The coupling of pressure and velocity was achieved 

through the implementation of SIMPLE (Semi–Implicit Method for Pressure–Linked Equations), as proposed by 

Patankar (1972). The discretization of the different terms was made using the 2nd–order accurate scheme, the 

usual central differences scheme for the diffusion term and the bounded LUDS scheme for the momentum 

advective term, respectively. The observed scaled residuals for the solution approached an asymptotic value of 

10–6 for both pressure and velocity. A series of preliminary calculations for mesh independent analysis were 

carried out using a Newtonian fluid at an intermediate generalized Reynolds number (Regen = 10.33), 

Regen =  (8)
1−𝑛

𝜌𝐷ℎ
𝑛𝑈2−𝑛

𝐾
(

𝑛

𝑎 + 𝑏𝑛
)
𝑛

 (9) 

Here, 𝐷ℎ represents the hydraulic diameter, 𝑈 is the imposed average velocity, and 𝑎 and 𝑏 are geometric 

parameters characterizing the cross–section of the duct as defined by Kozicki et al (1966). Three hexahedral 

meshes with resolutions of 600 × 40 (Mesh 1), 1200 × 80 (Mesh 2), and 2400 × 160 (Mesh 3) were employed 

to demonstrate suitable mesh density and to investigate the accuracy of the simulations. A non–uniform cell 

size distribution was applied near the channel wall, which is a high gradient region. Additionally, for a quantitative 

comparison among these results, a relative error (𝐸𝑟) was defined as follows 

𝐸𝑟 = 
|𝑋𝑖 − 𝑋𝑟𝑒𝑓|

𝑋𝑟𝑒𝑓
. (10) 

Where 𝑋𝑖 is the value of the considered variable at a specific mesh point, and 𝑋𝑟𝑒𝑓 is the corresponding analytical 

value. 𝑋𝑟𝑒𝑓 for centerline velocity at the outlet (𝑈𝐶𝑉) and pressure drop (∆𝑝) were referred from the theory (Kundu 

et al., 2016). For the development length (𝑙𝐷), the axial distance required for the centerline velocity to reach 99% 

of its fully developed value, 𝑋𝑟𝑒𝑓  was determined using Richardson’s extrapolation. The values of 𝐸𝑟 for each 

parameter are shown in Table 2. For all observed variables, the values of 𝐸𝑟 for Mesh 2 were lower than 0.1 % 

suggesting that this mesh establishes the desired accuracy with less computational time than Mesh 3. Thus, 

Mesh 2 was used in all remaining tests discussed in the next sections. 

Table 2: Mesh characteristics and relative error of interested parameter. 

Mesh Nx Ny NC 𝑙𝐷 H⁄  
𝐸𝑟 

𝑈𝐶𝑉 (outlet) ∆𝑝 𝑙𝐷 

1 600 40 24,000 0.85 3.33 × 10 – 4 4.83 × 10 – 4 0.11 

2 1,200 80 96,000 0.82 4.73 × 10 – 4 8.33 × 10 – 6 0.08 

3 2,400 160 384,000 0.77 2.67 × 10 – 4 5.00 × 10 – 4 0.02 

3. Results and discussion 

The results related to the various stages of evaluating the newly adapted viscosity model are presented in the 

following sections including: (I) comparing the predictions of the developed model with experimental results from 

the literature, and (II) assessing the apparent viscosity from each constitutive model. 

 

Wall 

Uniform 
Velocity 

Inlet 

  

100H 

H

2
 

x 

  

Symmetry Plane 
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3.1 Comparison between simulation and experimental data 

To validate the predictions, the simulated results obtained using this model are compared with experimental 

data presented by Ansari et al. (2020). The viscosity curves for 0.2 wt% and 0.4 wt% polyacrylamide solutions 

within the shear rate (𝛾̇) range of 10 – 1000 s-1 are utilized to characterize the rheological properties of the 

validated fluids. By employing the summarized power law parameters available in the literature, the model 

demonstrates comparable results to the measured data, as illustrated in Figure 2. 

 

Figure 2: The viscosity of 0.2 wt% and 0.4 wt% polyacrylamide solutions at various shear rates. 

With these same stated properties, simulated velocity profiles and measured velocity profiles can be compared. 

Figure 3 illustrates the velocity profiles of the validating fluid at Regen= 1 and Regen= 10, respectively. In all cases, 

good agreement with the experimental results was observed. The small differences can be attributed to the fact 

that the rheological characteristics of the fluid used in the present work were not entirely identical to those used 

in the experiment (Ansari et al., 2020). 

 
(a) 

 
(b) 

Figure 3: The velocity profiles of the validating fluids at (a) 𝑅𝑒𝑔𝑒𝑛= 1 and (b) 𝑅𝑒𝑔𝑒𝑛= 10. 

3.2 The apparent viscosity from various viscosity models 

In the realm of shear-thinning non–Newtonian fluids, numerous viscosity models find extensive use in diverse 

applications. Each model comes with its advantages and limitations. The selection of an appropriate model 

enhances usability, ensuring efficiency and satisfaction in terms of both quality and quantity. Consequently, a 
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thorough exploration of the capabilities of the recently developed viscosity model becomes imperative. Similarly, 

for the validation section, maintaining the same range of test fluid characteristics proves crucial. Literature data 

from Guillot and Dunand (1985) provided the measured data for Hydroxypropyl guar (HPG) using a coaxial 

cylinder viscometer. Moukhtari and Lecampion (2018) reproduced these experimental results and demonstrated 

them with various viscosity models, including power law, Carreau, and Ellis models. Simulations with different 

Reynolds numbers were conducted to establish a range of viscosity–shear rate relationships. Figure 4 illustrates 

the numerical predictions of viscosity for HPG fluid as a function of shear rate using different viscosity models. 

For comparison, experimental data are also included. From the results of simulated apparent viscosity, all 

viscosity models effectively predicted the shear–thinning characteristics of the interrelated testing fluid in the 

moderate shear rate zone, utilizing the rheological parameters outlined in Table 3. In comparison to the 

experimental data, the numerical results demonstrated a satisfactory qualitative agreement. Notably, the 

disparity among predictions from viscosity models started to converge and share the same value of fluid 

characteristics within a specific shear rate zone. However, beyond this zone, as the shear rate reached a certain 

threshold, the predictions began to vary again. 

 

Figure 4: The relation curve of viscosity and shear rate of HPG fluid. 

Table 3: Parameters of the HPG fluid for viscosity models depicted in Figure 4. 

Model Name  Parameter  Value 

Power law, Truncated power law, and Sisko 𝑛 0.46 

 𝐾 0.75 

Cross power law 𝑛 0.59 

 𝑚 0.17 

Bird–Carreau 𝑛 0.48 

 𝑘 0.38 

Proposed model – Eq(8) 𝑛 0.44 

 𝐾 0.75 

 𝜆  3.00 

 𝜃  2.00 

For all models 

(Except power law) 

𝜂0  0.44  

𝜂∞ 0.001  
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In low shear rate zone, the comparison of simulated results also reveals that the prediction from the proposed 

viscosity model qualitatively represent more consistent result with the experimental data among the other. 

4. Conclusion 

This study introduces a novel numerical methodology for developing a viscosity model based on the Ostwald–

de Waele’s relation or the power law model, aiming to capture the characteristics of shear–thinning non–

Newtonian fluid through Computational Fluid Dynamics (CFD) simulations. Rigorous testing of the developed 

constitutive equation has demonstrated the stability and efficiency of the model constructed in this work. 

Comparisons between the predictions of the newly proposed viscosity model and experimental data obtained 

by Ansari et al. (2020) revealed the consistency and reliability of the developed tool. Additionally, a 

comprehensive comparison of the proposed model against experimental data (Guillot and Dunand, 1985) and 

various viscosity models was reported. The results exhibit good agreement with literature data in both low and 

moderate shear–rate zones, which being a generic range of the flow shear rate in several industrial processes 

and applications, affirming the success of the adopted methodology.  

Nomenclature

𝜌 – density of fluid, kg/m3 

𝒖 – velocity vector, m2/s 

𝑝 – pressure, Pa 

𝜂 – dynamic viscosity of fluid, kg/m s 

𝝉 – stress tensor or shear stress, Pa 

𝐃 – symmetric rate of strain tensor, 1/s 

𝑛 – flow behavior index, - 

𝐾 – flow consistency index, Pa sn 

𝛾̇ – shear rate of the fluid’s flow, 1/s 

𝜇0 – initial viscosity, kg/m s 

𝜇∞ – infinite viscosity, kg/m s 

𝐾∗ – modified consistency index of 𝐾, - 

𝜆 – time constant for proposed viscosity model, s 

𝜃 – scale factor for time constant 𝜆, - 

Regen – generalized Reynolds number, - 

𝐷ℎ – hydraulic diameter, m 

𝑈 – imposed average velocity, m2/s 

𝑎, 𝑏 – geometric parameters characterizing  

          the cross-section of the duct, -  

𝐸𝑟 – relative error, - 

𝑚 – time constant for Cross power law model, s 

𝑘 – time constant for Bird–Carreau model, s 
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