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The objective of this work was to study the process of torrefaction of pellets produced from pine residues 

generated in the sawmill process in Uruguay. The pellets were torrefied in a tubular furnace at a heating rate of 

5 °C/min under an inert atmosphere. The experimental torrefaction tests were carried out at temperatures of 

250 and 300 °C and holding times of 30 and 60 min. The performance of the process was evaluated in terms of 

mass yield, energy yield, and torrefaction factor. The raw and torrefied pellets were evaluated for thermal, 

physical, and chemical characterization. The effect of the torrefaction process on the pellet quality was studied. 

In addition, the combustion behavior of the raw and torrefied pellets was analyzed using thermogravimetric 

analysis (TG-DTG) and differential scanning calorimetry (DSC). The increase in temperature reduces the mass 

yield of the torrefied pellets while increasing the HHV, carbon content, and ash content. Incorporating 

torrefaction and pelletizing processes improves the energy properties of pellets, other research is required to 

evaluate the costs associated with handling, transportation, and storage for power generation applications. 

1. Introduction 

The increase in the consumption of fuels sourced from renewable energies in Uruguay has reshaped demand 

across residential, commercial, and industrial sectors. Biomass, as a renewable resource, not only mitigates 

greenhouse gas emissions but also facilitates the production of biofuels for transportation, electricity, and heat 

through direct combustion or conversion processes (Tursi, 2019). This versatile source can be stored and used 

to generate energy on demand, contributing to regional and global energy supplies (Rentizelas et al.,2009). 

Biomass in Uruguay covers 40% of the country's primary matrix, with 75.5% coming from waste (black liquor, 

wood chips, sawdust, rice husks, sugar cane bagasse, pellets and briquettes, and others), 21% from firewood, 

and 3.5% from biofuel (BEN,2022). The advances in the forestry sector have encouraged the search for new 

sustainable alternatives for the management of woody biomass, especially wastes from the wood processing 

industry (shavings, sawdust, chips, bark) generated by small and medium enterprises, whose destination is still 

undefined and which can complement the national energy matrix. The cost of the supply chain and the 

technology required to convert biomass into useful forms of energy are some of the most significant barriers to 

the increased use of biomass in the energy supply. Biomass has low density, high moisture content, and low 

calorific value, and requires investment in equipment for collection, handling, transportation, and storage 

(Rentizelas et al.,2009). 

In recent years, pretreatment technologies like densification and torrefaction have developed for waste biomass 

applications, to improve the fuel properties of solid biomass. Densification is a process that uses mechanical 

force to compress previously ground biomass waste into pellets or briquettes. The benefits of densified biomass 

include lower moisture content, increased volumetric energy density and energy efficiency, reduced emissions, 

and improved combustion control (San Miguel et al., 2022). Pelletizing results in the formation of a solid fuel 

with a regular size and shape suitable for residential heating applications and commercial power generation, 

including combustion and gasification. Pelletizing of sawdust increases its bulk density from 100-200 kg/m3 to 

550-750 kg/m3, which is the main factor in reducing transportation, handling, and storage costs (Kumar et 
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al.,2017). Torrefaction is a thermal treatment that occurs in an inert atmosphere at 200–300 °C reaction 

temperatures, during a long residence time (zhang et al., 2018). The benefits of torrefaction include the 

improvement of biomass quality in terms of physical properties and chemical composition, such as an increase 

in energy density, higher hydrophobicity or water resistance in the material, and better uniformity (Chen et 

al.,2015). The product of this process is an energy-rich solid fuel with a higher heating value, fewer oxygen-

containing functional groups, lower O/C and H/C ratios and moisture content, and higher hydrophobicity 

compared to the raw feedstock (Riatz et al.,2023). Pelletizing is a well-established and commercially practiced 

process, but torrefaction is a relatively new and emerging technology (Mauro et al., 2018). While raw pellets 

would continue to serve existing markets, torrefied pellets could be used to develop emerging markets for solid 

fuel substitutes in bioenergy (Kumar et al., 2017). Using combined torrefaction and densification processes will 

allow for an increase in the applications of produced pellets and have a higher energy value product. However, 

it is necessary to ensure that pellets can be produced with minimal energy consumption and take advantage of 

the benefits of torrefaction (Ghiasi et al.,2014). 

In this study, raw pellets of Pinus Elliottii wood were torrified under different temperature and time conditions at 

a heating rate of 5 °C/min. To study the effects of temperature and time on the energy parameters of the torrified 

pellets, higher heating values, mass, and energy yield data were determined. The properties of raw and torrefied 

pellets were determined by proximate and elemental analysis. In addition, the combustion behavior of raw and 

torrefied pellets was analyzed by thermogravimetric analysis (TG-DTG) and differential scanning calorimeter 

(DSC). 

2. Materials and Methods 

2.1 Raw biomass 

The raw pellets used for the study were produced in a small pellet plant in Uruguay from Pinus Elliottii wood. 

The pellets were produced using sawmill by-products. The initial moisture content of the sawdust in the plant is 

52 %. Before the production of pellets, the feedstock is grinding and drying to get moisture content between 10-

12 %, it has a bulk density of 216 kg/m3. The raw pellets had a diameter of 6 mm, lengths between 15-20 mm, 

and a bulk density of 518 kg/m3 with a moisture content of 10 %. 

2.2 Pellets torrefaction 

Pellet torrefaction was performed using a tubular furnace with a controlled temperature (Figure 1). Torrefaction 

experimental tests were carried out in an inert N2 atmosphere (50 L/min). The temperature was raised from 

25°C to the final torrefaction temperatures of 250 and 300 °C with a constant heating rate (5 °C/min). The 

torrification holding time for each temperature was 30 and 60 minutes, followed by a natural cooling down to the 

ambient temperature. The resultant torrified pellets were designated as PTxy where x is the temperature ( °C), 

and y is the time (y min). 

 

Figure 1. Torrefaction Experiment Setup 

The samples were weighed before and after torrefaction to enable calculation of the mass yield (%) in all 

experiments according to Eq(1), where mt and ma are the sample weights before and after torrefaction, 

respectively. 
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(1) 

The energy yield was calculated using  Eq(2) and the torrefaction factor was obtained using Eq (3). The higher 

heating value (HHV) was determined experimentally by the combustion of 1 g of pellet in a bomb calorimeter 

(XRY-1A, China) under an oxygen atmosphere (30 bar) following UNE-EN ISO 18125:2018. These three 

performance indices are used to evaluate the torrefaction performance. Mass yield is used to evaluate the effect 

of torrefaction on mass loss. The energy yield is the chemical energy that remains in the torrefied pellet. The 

torrefaction factor is a measure of the severity of the torrefaction process in the pellets under various process 

conditions. It reflects both the energy yield as well as the energy density of the resulting biochar (zhang et al., 

2018). 

 
(2) 

 

 
(3) 

2.3 Characterization of raw and torrefied pellets 

The raw and torrefied pellets were characterized to study the effect of the torrefaction process on pellet quality. 

Carbon (C), hydrogen (H), and nitrogen (N) contents were determined using an elemental analyzer CHN 

628LECO, and the oxygen (O) content was determined by subtracting the sum of all elements from 100 percent. 

Moisture content (MC) was determined as a loss in weight in a drying oven at 105°C, volatile matter (VM) was 

determined as a loss in weight at 950°C by 6 min, and ash content (AC) was determined as the residue after 

burning to constant weight at 550°C. This was carried out following the ISO 18134-3:2023,  ISO 18123:2023, 

and ISO 21404: 2020 methods, the fixed carbon (FC) content was obtained by difference of ash and volatile 

matter contents. All of the analyses were carried out a minimum of three times. 

2.4 Thermogravimetric analysis 

Thermogravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC) of the raw pellets and 

torrified pellets were studied using a TGA analyzer (Netzsch STA 449F3). In each test, 10 ± 0.5 mg of powdered 

samples were heated from ambient temperature to 800 °C at heating rates 10 °C/min under an airflow of 50 

ml/min. Thermogravimetric analysis was used to investigate the combustion performance and torrefaction 

influence in the samples. 

3. Results and Discussion 

3.1 Effect of the torrefaction on pellets properties 

Table 1 shows the mass yield, HHV, energy yield, and torrefaction factor of the raw and torrefied pellets. The 

HHV of the torrefied pellets is higher compared to the raw pellets and shows an increasing trend with increasing 

torrefaction temperature and residence time. The HHV of the pellets produced at 250 °C was between 33-35% 

higher than the original pellets, while those produced at 300 °C had an HHV between 39 and 40% higher. As 

the torrefaction temperature and time increase, the mass yield decreases because more chemical reactions 

occur, hemicellulose is the major contributor to dry mass loss during biomass torrefaction. (Manouchehrinejad 

and Mani, 2018). 

Table 1: Effect torrefaction parameters 

Sample Mass yield (%)  HHV (MJ/kg) Energy yield (%) Torrefaction factor 

Raw pellets 100 17.7 100 - 

PT25030 55 26.4 82 1.50 

PT25060 50 27.9 79 1.59 

PT30030 40 29.3 67 1.67 

PT30060 39 29.4 65 1.67 

 

The energy yield is reduced due to the decrease in the mass yield of the solid. The lowest mass yield was 38 

wt% and it was obtained at the most severe torrefaction conditions 300°C and 60 min, this implies that 
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approximately 62% of the raw pellet is thermally degraded from the torrefaction. Similar results were reported 

for previous studies of wood biomass. Iglesias Canabal et al.(2023) studied the torrefaction of pellets of 

debarked radiata pine, the results showed a highly significant effect of the torrefaction treatments on the energy 

properties, the mass yields were higher in the T300-40 and T300-60 samples (50.4% and 40.2%), the HHV 

reported were 26.5 and 26.2 MJ/kg respectively. The torrefaction factor increases with increasing torrefaction 

temperature, which is due to the high degree of mass loss resulting in the escape of volatile, condensable, and 

non-condensable gases (Mehdi., 2021). 

3.2 Elemental and Proximate Analysis 

The proximate and elemental analyses are shown in Table 2. It was found that the volatile matter content 

decreased, while the fixed carbon and ash content of the torrefied pellets increased with an increase in 

torrefaction temperature and holding time. The moisture content of torrefied pellets is lower than that of raw 

pellets. This reduction in moisture content plays an important role in increasing energy efficiency, improving 

energy product quality, and reducing emissions in the thermochemical energy conversion process (Chen et al., 

2015). The torrefaction process causes changes in the chemical composition of the raw pellets. During the 

devolatilization process, compounds containing hydroxyl groups present in the wood, especially hemicelluloses, 

are released as reaction products (gas and solid), reducing the hydrogen and oxygen content (Rousset et 

al.,2011). The increase in carbon content between 18-25% results in an increase in the energy content 

compared with the raw pellets. The decrease in hydrogen content with a simultaneous increase in carbon 

content can be considered as an indication of increased hydrophobicity in the samples (Ghiasi et al.,2014). 

Table 2: Proximate and elemental analysis 

Sample  MC (%) VM(%) Ash (%) FC* (%) C (%) H (%) N (%)  O*(%) 

Raw 

pellets 

10 88.6 0.8 10.6 46.98 6.10 0.27 46.65 

PT25030 2.4 54.8 1.32 43.9 64.67 4.98 0.26 30.09 

PT25060 1.9 54.4 1.25 44.4 61.69 5.63 0.23 32.45 

PT30030 2.7 44.0 2.16 53.9 70.89 4.44 0.10 24.60 

PT30060 2.1 40.3 2.42 57.3 71.74 4.84 0.30 23.12 

*by difference (All are in wt%, dry basis) 

3.3 Thermogravimetric analysis 

Thermogravimetric experiments TGA/DTG (Figure 2) and DSC (Figure 3) were used to study the combustion 

behavior of the raw and torrefied pellets. Figure 2 shows that the combustion takes place in two stages, for the 

raw pellets the first stage occurs between 200 and 350°C, this represents the devolatilization and combustion 

of light volatiles and the decomposition of hemicellulose (Bridgeman et al., 2008). The second stage above 

350°C represents the char combustion (Riatz et al., 2023). The first peak observed in DTG curve of the raw 

pellet is slightly observed in the pellet torrefied at temperatures of 250 °C, but is not present above PT30060 

curve (300 °C,60 min). Above 300°C, the mass loss curves were more pronounced for the torrefied samples 

than for the non-torrefied samples. 

 

 

Figure 2: Thermogravimetric analyses curves of wood pellets and torrefied pellets a)TGA;  b) DTG 
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In the Differential Scanning Calorimeter (DSC) Figure 3, two different exothermic reaction regions were 

observed. In the first region, the peak presence of the raw pellets is more pronounced. It was observed that with 

an increase in torrefaction temperature and holding time, the peak presence decreased. The second region 

shows that the peaks increase with increasing torrefaction temperature. The first region is due to the combustion 

of light volatiles and the second region represents the combustion of fixed carbon (Kok and Özgür, 2013). 

 

Figure 3: DSC curves of raw pellets and torrefied pellets 

Table 3 shows the  reaction regions observed in the DSC, ignition temperature (Ti), and Burnout temperature 

(Tb). The raw pellets are the easiest to ignite of the refined samples. This is because they have the highest VM 

content. The ignition temperature is the minimum temperature at which a fuel will spontaneously ignite; this is 

highly relevant to its safety in storage and delivery when used as a fuel in the industry (Lu et al.,2015). The 

burnout temperature of the PT30060 is higher than the other samples, this refers to the temperature at which 

combustion is complete. In addition, both ignition and burnout temperatures are key parameters for evaluating 

fuel selection, consumption, and combustor design (Lu et al.,2015). 

Table 3: Proximate and elemental analysis 

Samples  Region 1 Region 2 Ti (°C) Tb (°C) 

Raw 

pellets 

163-381 405-529 163 529 

PT25030 200-377 394-549 200 549 

PT25060 210-370 425-550 210 550 

PT30030 215-370 413-556 215 556 

PT30060 233-377 412-563 233 563 

 

The heat liberated during biomass combustion is based on the area under the DSC curve (Kok and Özgür, 

2013). According to Figure 3, the second region shows that the heat liberated from raw pellets is lower than that 

from torrified pellets. Combustion of torrefied pellets produces higher heat and reactions, and these increase at 

higher torrefaction temperatures. This is related to carbon content and HHV, which increase as torrefaction 

occurs (Tables 1 and 2). The results obtained are consistent with the DTA studies of Bridgeman et al. (2018), 

in which they show that the combustion of torrefied biomass produces higher reaction heat during combustion 

and this increases for fuels produced at higher torrefaction temperatures. The lower values for raw biomass are 

attributed to the higher moisture content of these fuels. 

4. Conclusions 

Torrefaction of Pinus Elliottii wood pellets was studied to determine the effect of torrefaction processes on the 

energetic properties of the pellets. Temperature had a significant effect on the HHV of the pellets. The HHV of 

pellets produced at 250 °C was between 33-35% higher than the original pellets, while those produced at 300°C 

had an HHV between 39 and 40% higher. Time had no significant effect compared to temperature.  The raw 

pellet became highly carbonaceous with the torrefaction process, presenting a carbon content of 64.7% at 250 

°C and 71.44% at 350 °C, which is between 18-25% higher than the raw pellet. Combustion behavior showed 

differences between torrefied pellets and raw pellets. Torrefied pellets produced higher heat of combustion 

during char burnout due to the higher fixed carbon content. This study shows that it is possible to combine 
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torrefaction and densification processes to improve the physical and energetic properties of raw pellets to 

produce a solid fuel that can be used as a tradable commodity to potentially replace fossil fuels.  Future research 

should delve into optimizing the torrefaction process parameters for different biomass types and evaluating the 

long-term storage stability and transport logistics of torrefied biomass to further understand its potential as a 

global energy commodity. 

Nomenclature 

DSC – Differential scanning calorimeter 

DTG – derivative thermogravimetric 

FC – fixed carbon 

HHV – higher heating value (MJ/kg) 

ma – mass after torrefaction (g) 

mt – mass before torrefaction (g) 

MC – moisture content 

TGA – Thermogravimetric analyses 

Ti–ignition temperature 

Tb– Burnout temperature 

VM –volatile matter 

wb –  wet basis (%) 
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