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In the process industry, equipment integrity control has always been an essential activity to prevent accidents, 

avoid unwanted interruptions and product losses, and extend the useful life of the plants over time. In this 

context, non-destructive test NDT methods have been widely used for decades to detect different forms of 

deterioration of materials, before they can lead to failure or ruptures. The measurement technologies used are 

different, depending on the types of expected damage. In many cases, by maintaining the same measurement 

technology, it is possible to considerably increase the effectiveness and frequency of measurements, using 

innovative digital techniques, including wireless communication (e.g. Wi-Fi, BLE, RFID, etc.), shared storage 

(cloud), machine learning ML techniques and autonomous motion systems (e.g. robots, drones).  

This paper reviews the main innovative solutions that allow to significantly enhance integrity measurements, 

including robotic inspections inside and outside equipment, pervasive systems for monitoring critical equipment, 

and augmented vision. 

Digital technologies for integrity inspections have already reached a good degree of maturity and are rapidly 

spreading. In this paper Strength Weakness Opportunity and Threats (SWOT) analysis is used to investigate 

the potential of these technologies, and a possible standardization in the future. Concerning the major accident 

hazard, the paper includes a discussion on how to quantify the contribution that these systems make to reduce 

the likelihood of accidental scenarios related to equipment failures at industrial establishments. 

1. Introduction 

In recent years, the digital transition has had a strong impact on the integrity management of process plants. 

The sensors, small-sized and low-cost, can be distributed pervasively in many elements of the plant, both on 

primary containment systems (e.g. pressure vessels and pipes, atmospheric tanks) and dynamic systems (e.g. 

pumps, compressors). The use of distributed sensors has become a way to supply a sort of “nervous system” 

to the equipment, adequate to monitor its health condition. A further step forward it is the use of technological 

solutions born in robotics. In process plants, integrity inspections require direct or close contact with the surfaces 

of the item to inspect. Thus, inspection systems with autonomous movement capabilities have been developed 

to reach points where no human operator could ever go. Technological research in this area is indeed very lively 

and, while it may still be premature to define standards, it is important to provide all interested parties (e.g. plant 

managers, service providers, control bodies, and competent authorities) with a common technical basis to guide 

choices and evaluations and thus benefit from technological developments. 

2. Pervasive Monitoring Systems 

Monitoring systems, in general terms, include one or more sensors and subsystems that provide services for 

identification, data gathering, processing and transmission. In process plants, they can be used to monitor the 

integrity and operability of critical equipment, including vessels, pipes, and rotating machinery. These monitoring 

systems are required to be cost-effective, non-invasive, flexible, and scalable. These solutions use existing NDT 
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techniques, which are miniaturized, automated, and connected to systems featuring local processing and 

communication capabilities so that the data collected over time can be transmitted to the control room to provide 

updated information on equipment conditions.  Well-known examples are vibration monitoring on rotating 

machinery and thickness monitoring by ultrasound testing (UT) on critical pipes.  

The rotating machinery has been the subject of specific control activities for decades, but in recent years these 

activities have highly improved, using permanent sensors connected via wi-fi to the control room and exploiting 

the potential of advanced ML techniques for signal processing, feature recognition, and detailed diagnosis 

(Tiboni et al. 2022). The benefits are remarkable, defects are detected much earlier and there is a significant 

reduction in risk for operators, who no longer have to go around spotting machines in difficult areas (Bragatto & 

Ansaldi 2022).  

In the process industries, during routine planned maintenance shutdowns primary containment systems (vessels 

and pipelines) are inspected to control the effects of deterioration mechanisms (e.g. corrosion, erosion, fatigue, 

etc.) and, consequently, prevent failures and accidents. These inspections are complemented, if possible, by 

several measurements during operation time. For a few years now there have also been pervasive systems for 

the continuous monitoring of items, difficult to measure in other ways. The solution consists of a network of 

miniatured sensors distributed in critical positions, aimed to early detect anomalous thinning. A significant 

example is corrosion under insulation, which is always an insidious problem because, in common practice, the 

detection requires the removal, at least partially, of the insulation of the pipes or tanks involved, with a significant 

impact on activities. The installation of ultrasonic sensors on a few critical positions under the insulation, 

connected via wifi, allows continuous monitoring of thinning and prevents corrosion and through-hole formation 

(Bragatto et al. 2018). Advanced AI defect detection is currently under development. By leveraging deep 

learning, machines can learn to recognize the defects detected by automated visual inspection or other NCD 

through examples while managing vast amounts of data   (Schmedemann et al., 2022). 

The combined use of distributed sensors contributes significantly to improving the performance of the plant 

integrity management system, increases reliability and availability, and reduces costs, as well as occupational 

hazard exposure for workers. 

3. Inspection Systems with Autonomous Movement Capability 

When possible, the use of pervasive sensors is the best way to monitor health conditions. Permanent sensors, 

anyway, cannot control too many points and, for many phenomena, localized measurements are inadequate to 

detect defects. For many situations, rather than continuous monitoring, it would be necessary to increase the 

frequency of inspections. That could be hindered by the costs as well as by the occupational risks for operators, 

including working at height (e.g. on elevating platforms), confined or polluted environments, oxygen deficiency, 

and thermal extremes. To overcome these limitations, special measurement systems have been developed, 

suitable for operating even in environments inaccessible to human beings. These systems take advantage of 

recent achievements in robotics and self-driving ground and air vehicles, transferring these possibilities to 

inspection activities. These systems can overcome the physical barriers that stand between the operator and 

the object to be measured.  They can bring the sensor into contact with the equipment to be measured. It is a 

large family of systems, but they have some common characteristics, which we summarize below.  

3.1 Features 

The first and fundamental characteristic is that they carry out a "mission". Thus, these systems are activated for 

a relatively short period and must reach the required positions and perform all the necessary measurements. 

The systems must complete the mission without causing damage to the system itself, to the instrumentation 

transported, to the equipment being measured, to people, machines, structures, and any other objects along 

the way.  

These systems have parts that allow movement in a particular environment, which can be terrestrial, aerial, or 

liquid. Movement can be outside or inside the equipment, even in operation. Depending on the need, the 

systems will be specialized to move in cramped, high-altitude, remote, or hostile environments for various 

reasons, such as extreme temperatures, lack of oxygen, or pollution. If the system moves on the ground, to 

control the equipment from the outside, it is called a "rover” or more generally of unmanned vehicle. If it moves 

in the air, it is called a “drone” or better UAV (Unmanned Aerial Vehicle). A drone can move outside equipment 

or even inside particularly large equipment when it is not in operation. The same term is used for systems that 

move in the sea or similar water bodies to inspect equipment from the outside, typically underwater pipelines 

(Yu et al. 2019).  

There is also a large group of systems that move inside the pipes in operation and control the condition of the 

internal walls. This group includes common systems such as PIGs (Pipeline Inspection Gauges), which have 

long been used in pipelines, as well as robots specialized for missions within more complex and difficult plants. 
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Possible moving organs include wheels, multi-segment articulated legs, and. Systems can be divided into 

passive and active systems. The passive systems are dragged by the flow and as they move forward and rotate 

autonomously, verifying wall thicknesses with ultrasonic sensors. It is an effective system, but not very versatile, 

because it has many limitations, including tube size, angles, and bend radii. Systems with autonomous 

movement (e.g. caterpillar) are made with various segments connected by bellows that inflate and deflate (Rusu 

and Tatar, 2022).  A further evolution of the PIGS is the robot systems that can be submersed into the liquid 

inside large tanks. Thanks to wheels, they have moving capabilities all around the bottom. Energy is provided 

through a cable connecting the moving system to the external.  

A further group of systems includes the robots that climb on the outside of equipment. Climbing robots are 

equipped with four or more independent mechanical limbs, equipped with adhesion devices. Adhesion devices 

can be mechanical, magnetic, or pneumatic. Essential elements are three-dimensional vision devices, with 

related image processing software, which make it possible to identify obstacles and find the safest route. To 

control movements, systems at the entry-level have just a few sensors on board that warn of obstacles and 

interference and remote control is required. In more sophisticated systems there are many sensors on board to 

perceive the environment as a whole and autonomous computing resources to process the perceived signals 

and move autonomously in the environment to find the target and carry out the mission (Dejian Li, 2017).  It is 

essential to have robust software on board, which can adapt movement in various situations, taking advantage 

of the learning possibilities provided by artificial intelligence (Devold et al. 2019). For sensors and motion 

actuators, the systems need power, which is supplied by an internal rechargeable battery. Less frequent are the 

alternatives of cable-powered, solar panel-powered, or other energy-harvesting systems. 

All systems have one or more specific measurement sensors on board for assessing the status of the equipment 

to be measured. Drones typically stay at a minimum distance from the target and, therefore, install HD cameras 

for examination in the field of visible or IR. In a few cases, a light is provided to illuminate the target. If direct 

contact with the target is possible, ultrasonic thickness gauges, eddy current (ET) or magnetic flux loss (MFL) 

sensors can be mounted. The measurements require the availability of specific resources for data acquisition, 

pre-processing storage, and communication.  

3.2 Examples from Process Industries 

A few cases are discussed here, just to give an idea of the benefits of digital transition for inspection practice.  

For measurements of points at height on internal surfaces of boilers and furnaces, scaffolding or equivalent 

equipment would need to be erected and dismantled to allow the operator safe access to the locations to be 

duly inspected during periodical shutdowns. Using drones flying inside, the entire interior walls are covered. 

Alternatively climbing robots may be used. Thickness measurements on distillation columns and cooling towers, 

even in operation, are effectively carried out by climbing robots, which avoid dangers for inspectors.  

Flares are an essential system for the safety of process plants and are subject to various forms of deterioration, 

including corrosion and cracks that can cause service interruptions with serious consequences. Inspections 

have always been problematic, both because of the difficulty of access, because of the height, and because of 

the very high temperature, which is maintained for a few days even after the shutdown.  For flares, which are in 

relatively free areas, it is effective to use drones, which mount high-resolution video cameras and allow a very 

detailed visual examination, keeping the operator in a safe position (Sabry 2017). Chimneys are also subject to 

deterioration due to temperature and effluent chemical composition and need periodical inspections requiring, 

complex scaffoldings, which are expensive and time-wasting. Drones provide a valuable alternative to that, 

cutting costs and time. 

Measurements of major pipelines connecting terminals, depots, and refineries are regularly performed by PIGs. 

Active piping inspection systems, discussed in §3.1, are much more versatile and suitable also for lines featuring 

minor diameters or tight curves in sequence.  

In the oil industry, a periodical of atmospheric storage tanks is required by technical regulations to prevent 

losses. In current practice, internal inspection is possible just for empty and reclaimed tanks. Submersive robot 

inspection is a new technique that allows in-service tank inspection. Through a roof opening, they are dropped 

inside into the full tank until they reach the bottom, which is the most critical part. They are equipped with MFL 

(Magnetic Flux Loss) sensors, that measure the local corrosion phenomena. These systems reduce inspection 

costs, environmental impacts, and occupational risks (Shamsi et al. 2022). 

In gas and oil pipelines, external interference, including unintentional and intentional acts, are major causes of 

accidents, as demonstrated by the periodical reports (EGIG 2020) and, consequently, surveillance is an 

essential duty of operators. It’s a difficult activity due to the great distances involved and the normal obstacles 

of natural environments. Drones flying along the pipeline are valuable for early detection of leaks and potential 

interferences (Jordan et al. 2018). The drones are also assumed to be a deterrent for any malicious people. 
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4. Innovative Inspection Technologies in Risk Analysis 

In a nutshell, it can be said that the systems described in the previous sections are all aimed at increasing the 

probability of detecting damages and defects long before they lead to ruptures and consequent containment 

losses. The leading parameter for any inspection system is the probability of detection PoD, which is a function 

of the size of the minimal defect sd 

PoD = f ( sd )   (1) 

The risk analysis should quantitatively consider the contribution that these systems can make to safety. To this 

purpose, it is very useful FMEA/FMECA analysis, which identifies, for each element, the possible failure modes 

(in this case damage), the mechanisms that produce them, the severity of the consequences S, the probability 

of damage occurrence O; and D the probability of damage detection. According to the standard code that defines 

the method (EN 2006), both S and O are ranking numbers rather than the actual measures. The higher the 

number the higher the severity or the likelihood of occurrence. D is, instead, ranked in reverse order: the higher 

the PoD the lower the D factor.  

To get a quantitative determination of criticality the three factors are combined to have the Risk Priority Number 

RPN, defined as follows: 

RPN = S x O x D    (2) 

RPN determines the criticality of each item. Different types of FMECA assign different scales for the values of 

S, O, and D; but the standard code provides ranking tables ranging from 1 to 10 and the combination gives RPN 

ranging from 1 to 1000. Risk priority numbers may then be used for prioritization in addressing the mitigation of 

risk. Pervasive monitoring systems or autonomous motion inspection systems will be adopted to lower the RPN. 

They act on D number, which decreases, whilst S and O will remain the same. The higher the PoD associated 

with the inspection system, the lower the D number. Thus, the establishment operator will be able to decide the 

adoption of innovative technologies for the items having the highest RPNs. To give a quantitative idea of the 

expected benefits, some typical items have been imagined and RPNs pre and post-adoption have been 

calculated, using the above-mentioned ranking tables. Results are shown in table 1. 

Table FMECA analysis for a few critical items in a typical refinery 

Item Failure mode Cause Effect     S O D 
RPN 
pre 

Action taken S O D 
RPN 
post 

Compressor blockage fatigue wear 
loss of material, 
discontinuity 

4 8 4 96 
Vibration 
Monitoring 

4 8 1 32 

8 inches Insulated 
pipeline 

casual 
rupture 

CUI corrosion  
loss of a material 
major accident 

8 5 9 360 
UT pervasive 
sensors on a 
critical point 

8 5 3 120 

40 inches crude oil 
external pipeline 

casual 
rupture 

erosion-
corrosion 

loss of a material 
major accident 

6 5 8 240 
PIG periodical 
inspections 

6 5 2 60 

Furnace 
cracking 
creep 

thermal fatigue 
stress corrosion 

rupture 
explosion 

9 4 8 288 
EC sensors + 
Climbing Robot 

9 4 2 72 

Atmospheric 
Distillation Tower 

casual 
rupture  

sulfidation 
stress corrosion 

rupture  
major accident 

9 3 7 189 
EC sensors + 
Climbing Robot 

9 2 1 36 

Atmospheric 
Storage Tank 
(bottom) 

casual 
rupture 

pit corrosion 
trough-holes  

loss of material 
major accident 

4 8 7 224 
MFL sensors + 
Tank Inspection 
Rover 

4 8 1 32 

Flare misfunction 
thermal fatigue, 
fouling 

accident in 
emergency 

6 5 8 240 
IR camera + 
drone 

6 5 2 60 

 

For those who prefer to reason with the fault tree analysis FTA, the approach is similar. For each critical item 

for which an innovative technology is adopted, the probability of failure reported in the literature data should be 

divided by a factor related to the probability of detection of the defects. Of course, the higher the POD, the higher 

the reduction factor. Typical reduction values could range about one order of magnitude. In a very critical 

situation, the monitoring system itself, with its reliability, could even be included in the fault tree.  
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5. SWOT Analysis 

A SWOT analysis has been conducted here to better address the application of inspection technologies in the 

process industries. 

5.1 Strengths  

Mobile autonomous systems and continuous monitoring pervasive systems provide great improvements in 

inspection practices, as discussed in previous sections. The expected advantages include higher efficiency in 

preventing failures and a reduction of occupational risks and inspection costs. The investment costs, which in 

most cases are not very high, are compensated by the reduction of losses due to accidents and unwanted 

shutdowns and by the extension of equipment's useful life, as emerges from the analysis of the operational 

experience conducted during inspection activities on the safety management system. 

5.2 Weakness 

For all moving systems, the problem of interference with structures, machinery, and workers is critical. For 

ground systems, it is essential to have intelligent reliable devices that prevent the robot from causing damage 

to things or people, as well as adequate procedures compliant with occupational safety regulations. This issue 

is more complex for drones, which have more freedom degrees. They should be operated in areas that are not 

too congested and possibly free of inconspicuous objects, such as power lines. In any case, it should be 

remembered that the use of drones is subject to air navigation regulations, with an increasing series of 

obligations and authorizations depending on different parameters, including size, power, and altitude. The 

formation of potentially explosive atmospheres is a hazard present in many areas within chemical and oil plants. 

For aerial systems, that can be a major limitation. As far as drones are concerned, there is no possibility of 

having systems compatible with ATEX regulations. Permit-to-work procedures may allow the use just in open 

environments away from points of emission of flammable vapours, to exclude any possibility of explosive 

atmospheres. In the case of the use of drones in indoor environments, such as boilers and furnaces, their use 

is only possible after certified remediation (gas-free) of the internal environment. 

Inspection digital systems are highly interconnected and, consequently, prone to cyberattacks, as every digital 

system. In process industries, many attacks on industrial digital systems, even with severe consequences for 

property, workers, and the environment, have been reported in recent years (Iaiani et al. 2021) and it is essential 

to improve security readiness and resilience of such infrastructures (Iaiani et al. 2022). Underestimating these 

aspects can also affect negatively the spread of digital inspection technologies. 

5.3 Opportunities 

The measurements coming from distributed sensors will feed continuously the equipment integrity database. 

Further updating will come from mobile autonomous inspections, as well as from conventional inspections. 

Adequate software will combine all measurements coming continuously from different sources to understand 

the equipment's "health" condition and to guarantee the safe extension of its useful lifetime. To support 

operation, inspection, and maintenance, the software should include a platform for communication, a sound 

database, and models for equipment condition prediction. For this last point, advanced algorithms are preferred, 

including "Bayesian" networks, which allow the likelihood of failure to be continuously adapted, exploiting the 

large amount of data received (Ancione et al. 2023).  

Data collected by monitoring and mobile systems and prognostic evaluation may be used to update the plant's 

digital representation coming from computer-aided design/engineering CAD/CAE systems, to have a living 

digital representation or, in other words, a “digital twin” of the plant. Digital twins may be used in combination 

with augmented reality systems, which allow, for example, walking around the real plant by seeing the real 

present and future conditions superimposed on a pair of special glasses (smart glass), thus multiplying the 

potential of conventional inspection activities. Particularly interesting is also the combination of the data acquired 

with mobile measurements within inaccessible areas and the CAD-based digital model of the equipment itself 

(Ancione et al. 2022).  

5.4 Treats 

There is still a lack of recognized practices to assist decision-makers in digital innovation and plant safety. The 

investment in sensors and instrumentation must be accompanied by investments in software, including 

“prognostic”, which is essential to transform data into knowledge and decisions. If management fails to find a 

balance between all of this, it risks underperforming investments.  

A further critical issue is represented by the authorities and control bodies that have not had the opportunity to 

keep up to date with the rapid evolution of control technologies and do not take them into account in the 

assessment phase, hindering the adoption of new technologies.  
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6. Conclusions 

To respond to the exponential growth of remote measurement systems, the Italian Thermo-Technical Committee 

of the Italian Standards Body (UNI) is developing a guideline, to support operators in making effective choices 

in this field and adopting the most appropriate systems, avoiding those errors discussed in §5.4. The guideline 

will also be useful to system builders and integrators, who will be more confident in proposing the systems 

themselves to operators. Regulators will have a shared tool to understand the improvement in safety conditions 

induced by these new solutions, adequately taking into account in the various steps required by safety 

regulations, including authorization, derogations, recommendations, and requirements, in a flexible manner 

depending on the conditions. To transfer proven research results to industrial practice, the role of 

standardization is essential (Radauer et al. 2022). At an early stage, the guideline can play an essential role in 

directing the market, but without entangling it too much in rigid rules that could be overcome in a short time. 

Thanks to the support of an official document, even conservative companies will be encouraged; authorities and 

control bodies will overcome qualms and mistrust, which are obstacles to the development of technologies. 
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