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Sulfidation and naphthenic acid corrosion are well-known damage mechanisms, hence, there are many ways 

to deal with them. These mechanisms are common in refineries and petrochemical industry due to the treatment 

of sour crude oils. The industrial manager usually takes advantages from the use of sour crude oils from an 

economic point of view, but at the same time he/she has to cope with sulfidation and naphthenic acid corrosion 

because of their implication on safety. A recent study, which is based on the use of a bayesian network for the 

management of the previous mentioned corrosion mechanisms and the dynamic updating of the Residual Useful 

Lifetime (RUL), has been improved. The new approach integrates the estimated RUL in the risk evaluation, 

giving a dynamic update of the position of the equipment in the risk matrix by introducing the performance 

coefficients (KPI – Key Performance Indicators) belonging to the Asset Integrity. The approach has been applied 

to the pre-heating section of an atmospheric distillation unit of the Milazzo Refinery. The parameters that have 

been taken into consideration are the material metallurgy, the characteristics of feedstock, the temperature and 

the number of inspections carried out during a reference period. An attempt has been made to link the approach 

to the integrity operating windows (IOW), which have been already implemented in a homemade software by 

the I&T department of the refinery. 

1. Introduction 

In recent years, the Oil&Gas industry has focused on so-called tertiary recovery techniques and on the extraction 

of heavier and more acidic crude oils. Recovery techniques allow the extraction from the deposit to be pushed 

beyond 30% of its nominal volume, but require significant economic and technological efforts; acid crudes, on 

the other hand, are cheap but they contain higher amounts of metals, aromatic compounds and sulphur: this 

implies greater difficulty in processing, increased costs to ensure the safety and the integrity of the facilities, a 

greater associated risk. 

In atmospheric and vacuum distillation units, the main damage mechanisms are naphthenic acid corrosion and 

hydrogen sulphide corrosion. Naphthenic acids are made of cyclopentane and cyclohexane rings, a lateral 

aliphatic chain and a terminal carboxylic group; their formula is (CnH2n+zO2), with n number of carbon atoms and 

z represents zero or negative even integers. They exhibit corrosive features toward metals, in particular toward 

carbon steels: when temperature exceeds 200°C, the corrosive phenomenon activates, it achieves the reactivity 

peak around 350°C and then it diminishes over 400°C (Al-Moubaraki and Obot, 2021). The mechanism involves 

three main reactions: naphthenic acids react with iron and they form iron naphthenates; simultaneously, 

hydrogen sulphide reacts with the base metal to form solid iron sulphide, which deposits onto the metal surface; 

finally, hydrogen sulphide reacts with iron naphthenates to produce iron sulphides and to regenerate naphthenic 

acid. It is clear how the acidic component is always renewed, the deposited film on the surface is removed and 

the base metal is consumed. The factors that influence these reactions are crude’s features (sulphur and TAN), 

temperature, flow velocity, metallurgy and surface conditions. Sulfidation, or hydrogen sulphide corrosion, is a 

phenomenon that occurs in oil containing sulphur species between 230 and 425°C (Rebak, 2011): the reduction 
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of hydrogen and the oxidation of iron are responsible for the formation of iron sulphide FeS, which forms a 

pseudo-passive and not tenacious film. Several film morphologies are known but the boundary between one 

morphology and another one is not yet well delineated. The factors that determine the corrosion rate and the 

formation of iron sulphide are flow velocity, temperature, partial pressure of H2S, concentration of H2S, exposure 

time, concentration of dissolved salts and organic acids, metallurgy, presence of oxygen and chemical 

properties of the fluid. 

There are several techniques to keep the corrosion process under control: blending with lower acidity crude oils, 

conversion of naphthenic acids through esterification and decarboxylation processes, coating of surfaces, 

cathodic protection, corrosion inhibitors. However, the recent trend is to monitor the phenomenon continuously, 

to determine the plant health and choose maintenance and corrective actions according to what is happening. 

Therefore, static preventive maintenance, based on the replacement of consumable components at a given 

deadline, is no longer effective; predictive maintenance is more appropriate. Predictive maintenance is, by 

definition, a type of maintenance that consists of constant monitoring of the asset condition, through the 

application of sensors: these sensors provide real-time data that, when processed using appropriate 

mathematical models, can predict when maintenance action will be needed. bayesian networks represent a 

probabilistic data processing technique. 

In this paper, a recent bayesian network model (Ancione et al., 2023), developed to handle the previously 

mentioned corrosion mechanisms and dynamic updating of the Residual Useful Life (RUL), is improved to 

integrate the estimated RUL into the risk assessment. The approach provides a dynamic update of equipment 

position in the risk matrix by introducing Key Performance Indicators (KPIs) belonging to Asset Integrity (RAM, 

2023); in fact, one of the performance indicators of an asset integrity management system concerns the 

performed inspections, as it will be seen later. The manuscript is organized as follows: Section 2 describes the 

proposed methodology for defining a performance coefficient for dynamic updating of equipment position in the 

plant risk matrix; Section 3 presents the case study used to apply the methodology; Section 4 provides some 

results and a brief discussion. Finally, Section 5 reports the conclusions of the work. 

2. Methodology 

A bayesian network (BN) is a directed acyclic graph in which nodes represent variables, arcs represent direct 

dependencies between variables and the intensity of these dependencies is quantified through so-called 

conditional probabilities (Pearl, 1988). It allows estimating the a posteriori probability of a variable, exclusively 

from a priori knowledge of the variables connected to it (Torres-Toledano, 1998). The structure of the network 

itself returns the direct and indirect relationships between the variables involved. The centre of the network is 

Bayes' Theorem of Eq. (1). It defines the conditional probability of a variable: given two events A and B with 

nonzero probabilities, the conditional probability of A with respect to B is given by the product of the conditional 

probability of B with respect to A and the probability of A, divided by the probability of B 

 
(1) 

In reliability analysis, the most difficult events to predict are dependent random events. bayesian networks allow 

the explicit representation of such events (Torres-Toledano, 1998): 

• Common causes. Events causing multiple elementary failures. 

• Mutually exclusive primary events. The occurrence of one event automatically excludes the other. 

• Stand-by redundancies. When one component fails, the standby component is put into service, so the 

standby component becomes more susceptible to failure. 

• Components under load. The failure of one component results in an increased load on the remaining 

components; as a result, the remaining components are more susceptible to failure. 

The approach proposed in this work takes inspiration by a model presented by Ancione et al. (2023) and it 

extends it in order to integrate the contribution of inspections and define a risk index for the dynamic updating 

of the risk matric. It consists of a bayesian network model represented by 8 nodes, 5 of them are independent 

variables and 3 dependent variables. The independent nodes (or parent nodes) are Sulphur, TAN, Temperature, 

Initial Conditions and performed inspections (named Inspections); the dependent nodes (or child nodes) are 

Corrosion Rate (CR), Consumed Life (ΔRUL) and Risk Index (k). The CR node is a child of Sulphur, TAN and 

Temperature nodes, according to the Standard API 581 (2016). The ΔRUL node depends on Initial Condition 

and CR, whereas the k node depends on ΔRUL and Inspections. The variables are discretised according to the 

criteria established in Table 1 and 2. The relationships between CR and Initial Conditions are shown in Table 3 

and those regarding the Risk Index node are reported in Table 4. Concerning the Inspections node, it takes into 

𝑃 𝐴 𝐵 =  
𝑃 𝐵 𝐴 ∙ 𝑃(𝐴)

𝑃(𝐵)
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account the number of performed inspections compared to the number of inspections scheduled in a defined 

reference period. 

Table 1. State definition of Sulphur, TAN, Temperature, and Corrosion Rate. 

Sulphur [S%]  TAN [mgKOH/g]  Temperature [°C]  CR [mm/y] 

State 

name 
Range 

State 

name 
Range 

State 

name 
Range 

State 

name 
Range 

S1 ≤ 0.3 S1 ≤ 0.5 S1 ≤ 232 Very_Low ≤ 0.075 

S2 0.3 – 0.5 S2 0.5 – 1.1 S2 232 - 260 Low 0.075 – 0.15 

S3 0.5 – 1.05 S3 1.1 – 2.5 S3 260 - 288 Med_Low 0.15 – 0.25 

S4 1.05 - 2 S4 2.5 – 3.5 S4 288 - 315 Medium 0.25 – 0.35 

S5 2 – 2.75 S5 > 3.5 S5 315 - 343 Med_High 0.35 – 0.50 

S6 > 2.75   S6 343 - 371 High 0.50 – 1 
    S7 371 - 392 Very_High 1 – 1.5 
    S8 > 392 Highest > 1.5 

Table 2. State definition of Initial Condition, Inspection, and Risk Index nodes. 

Initial Conditions Inspections Risk Index 

State name Range [%] State name Range [%] State name Coefficient Value 

Normal 10 - 100  S1 80 - 100 % Low 𝑓1 0.25  

Warning 5 - 10  S2 50 - 80 % Medium Low 𝑓2 0.35  

Pre-Critical 2 - 5 S3 ≤ 50% Medium 𝑓3 0.50  

Critical ≤ 2   Medium High 𝑓4 0.65  

    High 𝑓5 1.00  

Table 3. Definition of Consumed Life (ΔRUL) node. 

 

CR [mm/y] 

Very 

Low 
Low 

Med-

Low 
Medium 

Medium 

High 
High 

Very 

High 
Highest 

Initial 

Conditions 

Normal L N N H H VH VH VH 

Warning N N H H VH VH VH VH 

Pre-Critical N N H H VH INT INT INT 

Critical H H VH INT INT INT INT INT 

L = Low; N = Normal; H = High; VH = Very High; INT = Intolerable. 

Table 4. Definition of Risk Index (k) node. 

 
ΔRUL 

Low Normal High Very High Intolerable 

Inspections 

80 – 100 % Low Low Medium Medium-High High 

50 – 80 % Low Medium-Low Medium Medium-High High 

≤ 50 % Medium-Low Medium Medium-High High High 

 

The Residual Useful Lifetime (RUL) is obtained by subtracting the life actually consumed from the reference 

period, usually 10 years (expressed in days), as given by Eq. (2): 

 (2) 

The Consumed Life (ΔRUL), also expressed in days, is calculated by Eq. (3): 

 
(3) 

where pn are the states probabilities of ΔRUL node and Δt is the time interval considered, whereas the numerical 

coefficients represent the states weights defined. 

The k parameter represents the weight average of the node, and it is calculated with Eq. (4). It is a coefficient 

that amplifies or reduces the overall risk value changing the position of the equipment in the Risk matrix (R) of 

(Eq. 5) in the considered plant section and after the examined time interval: 

𝑅𝑈𝐿 = 3650 −  𝛥𝑅𝑈𝐿   [𝑔𝑔] 

𝛥𝑅𝑈𝐿 =  0.5 𝑝1 + 1 𝑝2 + 2 𝑝3 + 3 𝑝4 + 4 𝑝5   𝛥𝑡   [𝑔𝑔] 
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(4) 

where 𝑓𝑖 coefficients represent the weights assigned for each state of the k node (see Table 2) and ri the states 

probabilities of same node. 

 (5) 

In which P is the failures probabilities matrix and C being the associated consequences matrix. 

3. Case study 

The case study is represented by an atmospheric distillation unit of the Milazzo Refinery. Two equipment were 

examined: the second preheating train (E8 A/H) and the transfer line down to the furnace (F1). Both are identified 

in Figure 1. The materials, the degradation mechanism, and the nominal conditions of the items analysed are 

given in Table 5. Furthermore, to each of them is associated an integrity operating window (API RP 584, 2014), 

respectively: IOW 76 with upper threshold 254°C, and IOW 78 with upper threshold 365°C. 

 

Figure 1. Simplified P&I diagram of the first part of the examined distillation unit and the IOW locations 

Table 5. Characteristics and nominal conditions of the items. 

Item Damage Mechanism Material TN [°C] SN [wt %] 

E-8 
Sulfidation 

Carbon Steel 266 3.3 

F-1 5 Cr 362 3.3 

TN nominal temperature, SN nominal sulphur percentage. 

4. Results and discussion 

For the sake of brevity, only the results for the first equipment analysed are reported here. Figure 2 provides the 

feed data characterised by Sulphur and TAN of the crudes processed in the July-September 2023 quarter [Δt is 

90 days]. Figure 3 illustrates the hourly detected temperatures and the upper threshold IOW concerned, 

whereas Figure 4 shows the bayesian network model applied to the case study concerning the carbon steel 

item. The CR node has been trained according to the API 581, with respect for the sulfidation mechanism for 

carbon steel. Then the data from the crude oils processed in the quarter analysed has been loaded into the 

model. Considering that the initial condition of the examined equipment is normal (between 10 and 100% of the 

design life), the ΔRUL estimated for the period observed has been about 43 days, that means the remaining 

useful lifetime is equal to 3607 days on a 10-year basis. 

  

𝑘 = 𝑓1  𝑟1 + 𝑓2 𝑟2 + 𝑓3 𝑟3 + 𝑓4 𝑟4 + 𝑓5 𝑟5 

𝑅 = 𝑘𝑃𝐶 
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(a) (b) 

Figure 2. Sulphur (a) and TAN (b) trends of July-September 2023 quarter 

 

Figure 3. Temperature trend of IOW 76 during the July-September 2023 quarter 

 

Figure 4. Bayesian network for the Carbon Steel crude preheating section.  

This first result highlights a significantly reduced lifetime consumption compared to that expected, i.e. 90 days. 

Furthermore, considering that the performed inspections have been in the range of 80 - 100 %, the Risk index 

obtained is 0.251. Assuming that the risk of the plant section in operating design conditions is 50%, it is reduced 

by 75% under current operating conditions: this means that, for a given scenario of damage, the change in 

operating conditions leads to a variation of the Risk Index. Such variation, according to Eq. (5), can affect the 
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overall Risk value and it can be represented by means an iso-risk graph to show the corresponding position of 

the item in the Risk matrix of the plant (Figure 5). 

 

 

Figure 5. The impact in changing the operating conditions: the consumed life was reduced by 50% and the risk 

was reduced by 75%. 

6. Conclusions 

The proposed approach, using bayesian networks methodology, exploits data from sensors to understand the 

operating conditions and characteristics of processed crudes. While traditional RBI approaches allow for 

quantitative risk assessment as a function of measured thicknesses over a predefined time range, this approach 

exploits data obtained continuously: this facilitates the prediction of the damage mechanisms’ progression, the 

remaining useful life of the plant section and the associated risk. As a result, decisions on plant utilization can 

be made, strengthening mitigation techniques if excessive damage is detected or exploring more aggressive 

operating conditions if possible. In addition, it is planned to extend this methodology to other plant sections, 

including those with different damage mechanisms and metallurgies, with the goal of mapping the entire 

atmospheric distillation unit. 
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