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Currently, Physical Fatigue Management is considered a vital part of process industries because of the 

diverse work scenarios, the high degree of non-standardized operations, and the high reliance on manual 

labor. The way an individual's performance deteriorates with the accumulation of fatigue can vary based on 

both the worker and the workplace conditions. However, the widely used method for assessing physical 

fatigue, the ‘Borg Rating of Perceived Exertion Scale’, has several limitations. These include high subjectivity, 

introducing more variability among individuals in a population, and weakness in dynamic measurements, 

potentially missing the optimal recovery time for operators. In this study, a Principal Component Analysis

(PCA)-based Fuzzy Logic Classifier has been designed to aid the development of customized warning 

systems for physical fatigue, and also support the intelligent decision-making process in process industries. 

1. Introduction

The human element plays a vital role in the consideration of safety and risk management according to the 

analysis of numerous accident reports within process industries (Yang and Demichela, 2023). Physical fatigue

is considered one of the main contributors to human error in industrial incidents and accidents, especially in

petrochemical, oil and gas plant’s operations (Mariana et al., 2018). The stresses from repetitive manual labor 

and demanding tasks stimulate physical fatigue, which hinders the development of effectiveness, safety and

even employee well-being in workplaces. Currently, the adoption of Physical Fatigue Management is

suggested to follow four phases as the framework: detection, identification, diagnosis and recovery, and 

consider the big potential of applying wearable sensors in dynamic monitoring (Sedighi Maman et al., 2020).

In industrial domains, particularly in the process industry which features multiple production patterns, non-

standard operations and complex workplaces involved, it is more valuable to achieve dynamic monitoring. 

Combining wearable devices with Physical Fatigue Management becomes more feasible and useful with their 

high availability right now, and strength in real-time measuring of physical fatigue in the operational 

environment while minimally influencing the primary job (Morillo and Demichela, 2023). There exist several 

wearable devices available in the current market that allow to record the physiological parameters of the

users. However, there are still several difficulties faced during the practical application of the wearable

devices: 

 Process multiple variables recorded by wearable devices, in other words, the high dimensional dataset.

 Build the connection between the monitored data and physical fatigue.

 Address the variability from high subjectivity of participants when doing the physical fatigue test by ‘Borg

Rating of Perceived Exertion Scale’ (shortened in ‘Borg Scale’).

 Guide the decision-making process with more intelligent and customized strategies. 

In this paper, these limitations are addressed through the design of a Principal Component Analysis (PCA)-

based fuzzy logic classifier. The designed classifier is regarded as beneficial to support the development of

customized warning systems and the intelligent decision-making process in process industries. 

211



 

2. Methodology 

In this section, the built database, research framework and applied methods are introduced.  

2.1 Database built 

The database analyzed in this research involves condition-monitored data for 33 participants (21 males and 

13 females) recruited voluntarily from a fitness facility, with ages ranging from 21 to 41 years. The mean age 

of the participants was 25.6 ± 4.4 years. This study adhered to the Declaration of Helsinki guidelines. Prior to 

data collection, each participant received an informed consent form that included detailed information on the 

study's nature, potential benefits, risks, and alternatives.  

The study uses a fitness setup to simulate industrial tasks safely and effectively. It uses weightlifting, 

resistance band exercises, isometric exercises, and bodyweight exercises. Weightlifting targets muscle groups 

involved in lifting, pushing, and pulling heavy objects. Resistance band exercises simulate tasks requiring 

pulling and pushing actions. Isometric exercises replicate holding positions suitable for mobility limitations or 

injury recovery. Participants can choose exercises based on fitness levels and preferences. 

During this process, a smartwatch is deployed to support dynamically monitoring operators’ performance 

parameters, where the data about electrodermal activity, skin temperature, pulse rate, accelerometer data, 

step counts and activity counts are collected. The ‘Borg Scale’ is applied to define whether participants are in 

states of (non-)fatigue. This approach allows people to subjectively assess their degree of physical exertion on 

a scale of 6 (no exertion) to 20 (highest intensity). Finally, 502 records are collected as the database. 

2.2 Research framework and methods 

Principal Component Analysis (PCA) is proven to have strengths in optimizing the selected feature indicators 

in the domain of intelligent monitoring and fatigue state detection (Chen et al., 2023). With applied multiple 

variables which may increase system complexity, PCA helps to convert those potentially correlated variables 

into a set of linearly uncorrelated variables through orthogonal transformation, which are called principal 

components. The information that principal components have compared with original multiple variables is 

explained by the term of a sum of squares of deviations or variances. Thus, PCA is broadly applied to achieve 

dimensionality reduction, and decrease the complexity of the target system (Chen et al., 2021). 

Fuzzy logic is an approach to support reasoning under uncertainty and partial information and facilitate 

modeling logical reasoning with imprecise or vague statements (Nguyen et al., 2023). The degree of belonging 

of an element x to a fuzzy set A is quantified by a membership function FA(x), providing each element with a 

value between 0 and 1 according to Eq (1), where X denotes the universe of discourse, and the value given to 

each element by the membership function is called membership value. 

𝐴 = {𝑥, 𝐹𝐴(𝑥) | 𝑥 ∈ 𝑋} (1) 

Fuzzy logic has the potential to analyze cases where one variable is vaguely divided into categorical 

categories (Baldissone et al., 2019). In this paper, fuzzy logic facilitates defining the vague zone between 

fatigue and non-fatigue categories.Figure 1 shows the framework and methods of this research. Firstly, face to 

the multiple dimensional performance parameters, Principal Component Analysis (PCA) is applied to extract 

key features related to physical fatigue. In order to solve the variability caused by individual differences and 

subjectivity of participants when conducting the Borg Test, the Fuzzy Set Theory is considered to distinguish 

the state between physical fatigue and non-physical fatigue. Then the PCA-based fuzzy logic classifier is 

accordingly designed. The benefits of the designed classifier are discussed in the last part. 

 

Figure 1. Research framework 
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3. Result 

The designed classifier with all results is shown in this section. 

3.1 Feature extraction 

Firstly, KMO and Bartlett's Test was conducted to check whether there is a correlation between variables in 

the data set, the result from this method supports the feasibility and suitability of feature-extracted techniques 

like PCA. According to Table 1, the KMO value is 0.761 with a significant value of <0.001***, which indicates 

that the chi-square value is statistically significant, meaning that the null hypothesis can be rejected (that the 

variables are not completely independent). Thus, this database is considered to be suitable for PCA. 

Table 1: KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.761 

Bartlett's Test of Sphericity 

Approx. Chi-Square 1111.187 

Degree of freedom 15 

Significance <0.001*** 

 

Table 2 and Figure 2 show the PCA results from the analysis. The choice of component numbers is based on 

their eigenvalues whose value is greater than 1. In this study, components 1 and 2 (PC1 and PC2) are 

selected with 66.079% of the variance could be explained. Considering the high complexity of the original 

database, 66% is regarded to be enough to remain the key feature of the database. Table 3 provides the 

component matrix about each variable’s coefficient, which explains how each feature contributes to two 

components. In this way, the original 6-dimensional features could be reduced to a 2-dimensional feature 

variable. 

Table 2: Results of PCA 

 Initial Eigenvalues Extraction Sums of Squared Loadings 

Component Total 
Explained 

variance % 

Cumulative 

variance % 
Total 

Explained 

variance % 

Cumulative 

variance % 

1 2.900 48.338 48.338 2.900 48.338 48.338 

2 1.064 17.741 66.079 1.064 17.741 66.079 

3 0.954 15.901 81.979    

4 0.569 9.476 91.455    

5 0.292 4.862 96.317    

6 0.221 3.683 100.000    

 

 

Figure 2: Scree Plot which supports to choose the number of components 
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Table 3: Component matrix with the loading of each variable 

Variable Component 

 1 2 

Electrodermal activity 0.456 -0.626 

Pulse rate 0.657 -0.338 

Skin temperature -0.212 0.593 

Accelerometer data 0.833 0.363 

Step counts 0.852 0.143 

Activity counts 0.892 0.233 

3.2 The selection of components that contribute to physical fatigue 

The mapping from the extracted two components to physical fatigue is checked by a visualized density plot 

(Figure 3), where component 1 (PC1) shows a relatively clear classifying performance. Component 2 was 

discarded here since its high overlapping zones between two states, which is not suitable for developing the 

classifier.  

 

Figure 3. Density plot of components 1 and 2 according to the fatigue level 

As for the common area shared by two fatigue states in the density plot of PC1, three potential reasons are 

considered: 

 Individual physiological differences: 

Participants vary in their cardiorespiratory endurance, muscle strength, overall fitness, etc., which affect their 

level of perceived fatigue.  

 Subjective interpretation and perceived differences: 

Even under similar physiological conditions, different participants may understand the concept of ‘fatigue’ 

differently. They may also differ in how they interpret the scale and map their feelings onto the scale. 

 Exercise Differences: 

Participants completed exercises designed to imitate industrial duties, with modifications in exercise type, trial 

time, and rest intervals. These variations in workout routines might result in variable exhaustion levels among 

individuals. Some people may feel more fatigued because of the nature and intensity of the workouts, as well 

as disparities in recovery time between trials and rest periods. 

To better deal with the variabilities, the approach of fuzzy logic in the fuzzy set theory was applied to support 

developing the classifier. 

3.3 PCA-based fuzzy logic classifier 

Component 1 extracted from the last part was set as the input of the designed classifier. Taking into account 

the advantages of the normal distribution in terms of good explanation ability, operation simplification, and the 

ability to fit negative numbers in the data set, the normal distribution is applied to fit the (non-)fatigue states. 

Maximum likelihood Estimation (MLE) supports to estimate the parameters of distributions of two states, which 

are shown in Eq (2) and Eq (3). Then, the membership function could be designed according to the two states’ 

Cumulative Density Function (CDF), which is shown in Figure 4a. 

The Probability Density Function (PDF) of the Non-fatigue state: 

𝑃𝐷𝐹𝑛𝑜𝑛𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑥) =
1

0.7201√2𝜋
𝑒−

1
2

(
𝑥+0.7079

0.7201
)2

 (2) 

214



The PDF of the Fatigue state: 

𝑃𝐷𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑥) =
1

0.7805√2𝜋
𝑒−

1
2

(
𝑥−0.5491

0.7805
)2

 (3) 

According to the membership function, it is possible to further define the area between two states based on 

the degree of belonging. The division could be more specialized based on the different needs of application 

scenarios, which inspires the adoption of different strategies or actions. In this case, prompt alerts would be 

available for operators once they entered the areas characterized by elevated levels of fatigue. Here are the 

general rules (Figure 4b): 

 Area 1 (A1: pure non-fatigue state): in this area, all belonging values of the fatigue state are 0, e.g., [-

3.6, 0]. Operators in this state are considered to be in a state of high mental concentration, and there is 

no need to intensively focus on the fatigue level of operators. 

 Area 2 (A2: higher non-fatigue state): in this area, belonging values of the non-fatigue state are higher 

than those of the fatigue state. The exhaustion of the operators began to accumulate gradually, but the 

impact on the work is not significant. Thus, intermittent rest is recommended. 

 Area 3 (A3: higher fatigue state): in this area, belonging values of the fatigue state are higher than those 

of the non-fatigue state. The impact on operators from physical fatigue should not be underestimated, 

longer resting time is supposed to be taken into account. 

 Area 4 (A4: pure fatigue area): in this area, all belonging values of the non-fatigue state are 0. Operators 

are fully tired, stricter regulations should be considered here, e.g., stopping work immediately and taking 

compulsory rests. 

 

 

Figure 4(a). The designed membership function of 

the classifier 

 

 

Figure 4(b). The division of physical fatigue states 

4. Discussion and conclusions 

In process industries, the diversity of work scenarios increases the difficulty of measuring the physical fatigue 

state of workers. This study focuses on four difficulties: 1. Apply Principal Component Analysis (PCA) to 

address the complexity from high dimensional dataset. 2. Determine the most relative component contributing 

to physical fatigue. 3. Fuzzy logic methods are considered to address the variability from high subjectivity of 

participants. 4. A PCA-based fuzzy logic classifier is designed to support intelligent decision-making 

processes. The finding of this study benefits practical activities in process industries. With the classifier, it is 

possible to evaluate workers’ fatigue levels, with the consideration of the complexities associated with the 

subjective nature of fatigue experienced by workers. And the implementation of this classifier is meaningful for 

enhancing worker welfare and productivity in process industries.  

This approach departs from the conventional static or infrequent assessments, which makes sure that fatigue 

levels are continuously assessed by providing real-time and continuous tracking with the help of deployed 

smart watches. Secondly, this approach helps to address the multiple data sources and data types faced in 

the process industries. Variables that related to physical fatigue can be furtherly determined as critical indexes, 

which makes it easier to identify fatigue early on and enables prompt responses that avoid severe exhaustion 

also with the consideration of cost consumption at the same time. Moreover, the classifier plays a crucial role 

in determining the optimal recovery times for workers. By distinguishing more clearly between states of fatigue 
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and non-fatigue, the system can recommend personalized rest periods and recovery strategies. This 

customization ensures that each worker receives the necessary downtime to recover fully, thereby preventing 

over-fatigue. As a result, workers are more likely to perform at their best during active work periods, which is 

highlighted in process industries with complex and intensive manual labor operations. Finally, the flexibility of 

the classifier allows for the development of agile, tailored warning systems. These systems can be adapted to 

meet the specific needs of different work environments within the process industry, enhancing safety and well-

being. The adoption of such customized strategies not only improves the immediate environment for workers 

but also boosts overall efficiency and productivity in the industry, with even the potential of setting new 

standards for worker care and operational excellence. 

The limitations of this study come from two aspects. In this study, multiple movements are generally 

considered as labor behavior without further classifying different operation types in different working scenarios. 

From the perspective of designing warning systems, it is not enough to divide in-between fatigue states in a 

general way, the diversity of different operation tasks and other considerations about potential consequences 

caused by physical fatigue in human errors should be also taken into account. 

The future work is expected to define different rules/strategies applied in different scenarios of process 

industries based on different membership values. Another meaningful work is to combine the considerations 

from different decision-making levels: e.g., operators, controllers, managers, etc., which furtherly guide the 

development of useful warning systems. Moreover, it is also valuable to encompass the development of a 

personalized scale for determining the optimal rest period, aligning with our research on fatigue states. 
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