
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                DOI: 10.3303/CET24111047 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Paper Received: 16 January 2024; Revised: 14 May 2024; Accepted: 21 July 2024 
Please cite this article as: Andriani G., Mocellin P., Pio G., Salzano E., Vianello C., 2024, Hydroxylamine Vs. Hydrogen Peroxide: a Comparative 
Study on Storage Stability, Chemical Engineering Transactions, 111, 277-282  DOI:10.3303/CET24111047 
  

 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 111, 2024 

A publication of 

 
The Italian Association 

of Chemical Engineering 

Online at www.cetjournal.it 

Guest Editors: Valerio Cozzani, Bruno Fabiano, Genserik Reniers 

Copyright © 2024, AIDIC Servizi S.r.l. 

ISBN 979-12-81206-11-3; ISSN 2283-9216 

Hydroxylamine vs. Hydrogen Peroxide: a Comparative Study 

on Storage Stability 

Giuseppe Andriania, Paolo Mocellina,*, Gianmaria Piob, Ernesto Salzanob, Chiara 

Vianelloa 

a Università degli Studi di Padova, Dipartimento di Ingegneria Industriale, Via Marzolo 9, 35131, Padova, Italia 
b Università di Bologna, Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Via Terracini 28, 40131, 

Bologna, Italia  

paolo.mocellin@unipd.it  

The chemical industry often handles, stores, and processes molecules like hydroxylamine (HA) and hydrogen 

peroxide (HP), which can easily undergo thermal decomposition reactions. Hence, the ideal perspective is to 

have simple quantitative criteria to use during the equipment design phase, accommodating the possibility of 

exothermic degradations of substances to enhance process safety and avoid thermal runaways. To this aim, 

the Frank-Kamenetskii theory of self-heating (FKT) can be involved in determining the critical size of a storage 

vessel to guarantee the intrinsic safe storage of chemically hazardous materials.  

Eventually, the proposed design strategy will be implemented to design storage equipment for two commercial 

aqueous solutions of HA and HP, respectively. In this way, it will be possible to compare the inherent thermal 

hazard linked to the storage of these mixtures, evaluating the threshold vessel size above which the self-heating 

phenomenon of the materials becomes no longer controllable. The HA and HP mixtures can be used alone or 

together in chemical processes as oxidants or precursors for producing hydroxyl radicals.  

Under comparable conditions free of impurities and organic contamination, the results show that the system 

made of 50 %w hydrogen peroxide is more stable than hydroxylamine. This is reflected in a larger characteristic 

size of the storage vessel able to handle appropriately self-heating phenomena potentially leading to runaway. 

1. Introduction 

It is well known that runaway phenomena are one of the leading causes of devastating industrial accidents 

(Mocellin et al., 2022). According to the ARIA database (ARIA), in the last 10 years, 14 accidents due to 

uncontrolled exothermic reactions took place in France, which involved organic and inorganic compounds, 

pharmaceuticals, or lithium-ion-based systems. Moving to China, from 1984 to 2019, up to 271 industrial 

accidents were caused by runaway reactions, mainly related to organic compounds (57.2 %), inorganic 

molecules (10.7 %), pharmaceutical substances (7.0 %) and agricultural chemicals (6.6 %) (Zhang et al., 2021). 

This agrees with the reported literature for the French industry runaway accident analysis (Dakkoune et al., 

2019). For what concerns the USA, the CSB database (CSB database) reports 13 industrial accidents under 

the section “reactive incident” from 2000 to 2023. The substances involved are mainly inorganic, pyrotechnic, 

and organic compounds. The companies belong primarily to the petrochemical, waste treatment, and fireworks 

manufacturing sectors, whereas the equipment involved were reactors, dryers, storage vessels and distillation 

columns. In the UK industry, from 1988 to 2013, 30 industrial accidents related to runaway reactions occurred 

(Saada et al., 2015). In these cases, polymerisation, decomposition, ethoxylation, refining, hydrogenation, and 

cracking processes were the primary sources of deviation from standard operating regimes and storage and 

transportation activities. Regarding the involved materials, fine chemicals, intermediate and heavy organics, 

plastics, rubbers, resins, and pharmaceuticals were the main responsible for uncontrolled thermal phenomena. 

Considering only the petrochemical industry, runaway reactions are the cause of almost 25 % of the total events 

of major accidents (Balasubramanian and Louvar, 2002).  
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Thus, to enhance process safety and system reliability, it is paramount to dispose of quantitative criteria to 

evaluate, manage and reduce risks related to exothermic reactions from the conceptual design of equipment to 

the standard operation of a chemical plant (Bassani et al., 2023). At the state of the art, to reduce the occurrence 

of these uncontrolled exothermic chemical transformations, primary attention is paid to the design (Andriani et 

al., 2024a) and operation (Vianello et al., 2018a) of chemical reactors. However, the risk of runaway can also 

be induced by an erroneous storage of chemicals caused by wrongly managed self-heating phenomena. Under 

this perspective, the Frank-Kamenetskii theory of self-heating (FKT) can be used to deeply understand the self-

heating features to limit their devastating effects (Frank-Kamenetskii, 1955). Using FKT, it is possible to have a 

practical criterion to verify if a storage vessel has been well-designed to dispose safely of the thermal energy 

generated by an unwanted exothermic reaction. 

Exothermic thermal decomposition is a typical unpleasant chemical process that must be accounted for when 

handling unstable materials (Pio et al., 2021). To understand the decomposition dynamic clearly, a classical 

strategy that could be implemented is performing a calorimetric analysis (Vianello et al., 2018b). With this 

experimental approach, it is possible to determine the main characteristics of the thermal degradation reaction, 

assessing thermodynamic, kinetic, onset and peak features. The calorimetric study of chemical reactions can 

be performed using different techniques, such as differential scanning calorimetry (DCS), thermogravimetric 

analysis (TGA), isothermal, adiabatic and reaction calorimetry, or accelerating rate calorimetry (ARC) 

(Vyazovkin et al., 2018). The main differences between the mentioned experimental strategies mainly consist 

of how the heat can be supplied to the system, the sample size and equipment, whether it is present or not 

stirring and the data acquisition procedure.  

On one hand, with calorimetry, it is possible to retrieve reliable data related to decomposition reactions. On the 

other hand, the FKT can provide a well-grounded methodology for the basic design and analysis of storage 

equipment. The objective of this work is to explore the combination of experimental data acquisition and 

elaboration as a means of improving chemical process safety. This methodology has potential applications in 

the design of storage vessels for thermally unstable substances, in line with the principles of Inherently Safer 

Design. By enabling the management of self-heating phenomena that may occur during the storage of high 

holdups, this approach can significantly reduce the risk of runaway accidents. As an example, two different 

unstable mixtures will be considered as case studies: a 50 %w/w hydroxylamine (HA) and hydrogen peroxide 

(HP) aqueous solutions. These two materials can be used separately in a wide variety of chemical processes 

(Ullmann, 2011) or together to produce hydroxyl radicals, a versatile reactant for the synthesis of chemicals or 

the oxidation of recalcitrant and toxic species (Chen et al., 2015). The dependence of the decomposition 

behavior of the HP 50 %w/w related to the presence of impurities will also be assessed.  

2. Methodology 

The logic workflow of the methdology is reported in Figure 1.  

 

Figure 1: Logical workflow of the proposed methodology. 

2.1 Data acquisition 

The preliminary step of the proposed method consists of acquiring the main physicochemical information. Being 

more specific, Ea, kk, n, CA0, Hr, Tonset, CP and kT are needed. All the quantities mentioned are necessary to 

model the decomposition of the 50 %w/w HA and HP aqueous mixtures. Onset temperatures, reaction kinetic 
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and thermodynamic data are resumed in Table 1. More specifically, the data related to the HP mixture has been 

taken from the literature (Anothairungrat et al., 2019) and in technical reports (Cefic Hydrogen Peroxide 

Technical Committee, 2021). Whereas the information belonging to the HA aqueous solution has been retrieved 

in the literature (Andriani et al., 2024b), in which a Thermal Screening Unit (TSU) calorimeter has been adopted 

for the kinetic studies. 

Table 1: Kinetic, thermodynamic and onset data of decomposition reaction. 

Mixture Ea [J/mol] kk [s-1] n [-] CA0 [mol/m3] Hr [J/mol] Tonset [K] 

50 %w/w HA 103103 9.33109 1 16.56103 -79.8103 393.15 

50 %w/w HP 86103 1.94106 1 17.64103 -98.0103 353.00 

The possibility of accounting for contaminants inside the HP mixture is worth mentioning. This involves using cf 

to determine k’k, evaluated as the product between kk and cf (Cefic Hydrogen Peroxide Technical Committee, 

2021). Indeed, it is well known that HP is very sensitive to impurities (Wu et al., 2011). Metallic contaminants 

can catalyse the decomposition mechanism, while organic matter can generate additional thermal energy due 

to parallel exothermic oxidation reactions. Thus, quantifying the effect of contaminants on the stability of the 

mixture in terms of maximum safe equipment size will be worth noting. 

2.2 Sizing of the storage vessel 

The sizing methodology of storage vessels proposed in this section is based on the FKT, a complementary 

model of the Semenov theory (Babrauskas, 2014). In the FKT, a quiescent fluid is assumed to exchange heat 

with the environment only with a conductive mechanism. Additionally, under the assumption of Bi equal to 

infinity, the environment temperature can be considered uniform and constant, whereas, inside the system, a 

temperature distribution will be established. Under this perspective, the maximum temperature of the reactive 

material will be in the centre of the vessel. The governing equation of the FKT, reported in Eq(1), has been 

derived considering that, due to the idealised cylindrical geometry of the system, the dimensionless temperature 

depends only on time and radial coordinates. In addition, a negligible reactant conversion and Ea tending to 

infinity have also been assumed. Considering a storage vessel where an undesired decomposition reaction 

could occur, all the above assumptions will lead to a conservatively safe-side designed vessel. Indeed, the 

stored fluid can be considered almost quiescent, except for natural convective motion, which contributes to 

dissipating the heat generated by the exothermic decomposition reaction. Furthermore, considering the thermal 

degradation as a collateral effect during storage, only a tiny amount of material will be reasonably consumed. 

 rw,crit = √
δcrit kT Rg Tamb

2

(−∆Hr) kk∞ exp(−
Ea

RgTamb
)CA0

n  Ea

 (1) 

Concerning Eq(1), all the variables involved must be expressed in SI units and the value of crit strictly depends 

on the system geometry. Being the storage vessel modelled as a cylinder, crit = 2.00 and rw,crit = r. Then, once 

a reference value of Tamb has been selected, rw,crit can be easily determined, or vice versa. Furthermore, the 

physical meaning of rw,crit, is linked to the ability of the system to handle the self-heating phenomenon. Indeed, 

for systems having a radius r > rw,crit, the considered equipment will no longer be able to dispose of the thermal 

energy safely. Hence, the self-heating phenomenon will lead to a runaway. On the other hand, for every value 

of system radius r  rw,crit, a safe material’s storage is ensured. As a further verification of the reliability of the 

proposed methodology, it is possible to check that Tmax is lower than Tonset. Specifically, Tmax can be quantified 

according to (Chambré, 1952). 

3. Results and discussions 

The results of the sizing methodology will be expressed in terms of rw,crit able to prevent runaway phenomena 

induced by self-heating features. Specific manuals must be consulted for a complete storage equipment design 

(API, 2020). From another perspective, the proposed strategy can be involved to verify that existing storage 

equipment containing materials prone to decomposition can safely handle the controlled substances. 

3.1 Storage vessel sizing 

Once all the physicochemical reference parameters of the materials have been collected and a specific 

geometry of the system has been set, a reference ambient temperature must be selected. Three different 

reference Tamb (i.e., 5 °C, 20 °C, and 35 °C) have been considered. A more detailed approach involves selecting 

a Tamb pertinent to the specific plant location or the maximum forecasted value. Table 2 reports the rw,crit and 
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Tmax values as a function of Tamb for both mixtures. The reported values of rw,crit and Tmax for the HP 50 %w/w 

aqueous mixture have been determined, neglecting the presence of impurities (i.e., cf = 1) and the thermal 

resistance offered by the equipment wall. 

Table 2: Critical vessel radius and maximum reached temperature for both the HA and HP 50 %w/w water 

solutions as a function of the ambient temperature. 

 rw,crit [m] Tmax [°C] 

Tamb [°C] 50 %w/w HA 50 %w/w HP 50 %w/w HA 50 %w/w HP 

5 2.93 5.80 13.7 15.4 

20 1.03 2.42 29.6 31.5 

35 0.40 1.10 45.6 47.7 

 

According to Once all the physicochemical reference parameters of the materials have been collected and a 

specific geometry of the system has been set, a reference ambient temperature must be selected. Three 

different reference Tamb (i.e., 5 °C, 20 °C, and 35 °C) have been considered. A more detailed approach involves 

selecting a Tamb pertinent to the specific plant location or the maximum forecasted value. Table 2 reports the 

rw,crit and Tmax values as a function of Tamb for both mixtures. The reported values of rw,crit and Tmax for the 

HP 50 %w/w aqueous mixture have been determined, neglecting the presence of impurities (i.e., cf = 1) and the 

thermal resistance offered by the equipment wall. 

Table 2, the first remarkable evidence is the strong dependence of the rw,crit from Tamb. Thus, the maximum 

credible ambient temperature must be carefully adopted for equipment design and verifications to ensure safe 

storage under seasonal variations. Considering a too low Tamb value, the risk of runaway will be underestimated 

due to an unproper-managed self-heating phenomenon of materials. Indeed, runaway scenarios are triggered 

if the system does not adequately dispose of the heat generated due to an exothermic reaction. In the presence 

of a homogeneous exothermic reaction, the Qgen depends on V. Schematising the storage vessel as a vertical 

cylinder able to exchange heat with the environment only via A, the thermal power dissipated by the system 

depends on A itself. Under this perspective, the ratio V/A is representative of the ratio between Qgen and Qex. 

Since V/A = r/4, when r increases, the relative weight of the Qgen/Qex ratio will also increase accordingly. Thus, 

since a too-low reference Tamb results in a higher rw,crit, a wrong assumption of Tamb will produce a vessel 

designed to be too prone to the runaway onset. In addition, analysing the listed Tmax value, they are all far above 

the Tonset for both the mixtures, even if the highest value of Tamb is considered. This will ensure that the material 

will not undergo violent decomposition reactions even in the hottest period of the year. 

Another interesting analysis concerns the stability of the HA and HP 50 %w/w aqueous solution. The storage of 

HP requires a critical vessel radius nearly double what is needed for HA, indicating the higher intrinsic instability 

of the HA 50 %w/w mixture as compared to HP, ignoring the presence of impurities. This bears significant 

implications for ensuring the safe storage of these chemicals and designing appropriate equipment accordingly. 

3.2 Effect of the presence of impurities 

As elucidated in Section 3.1., the HA 50 %w/w is more prone to decomposition compared to the HP 50 %w/w 

mixture. However, the thermal decomposition of the HP 50 %w/w aqueous solution can be enhanced by the 

presence of Fe3+ impurities. Therefore, it would be worthwhile to determine imp that can trigger a decomposition 

reaction in the HP mixture. Even if both organic and metal impurities can increase the sensitivity toward thermal 

degradation of the HP, only the effect of metallic compound contamination will be further analysed. In addition, 

the metallic impurities will be modelled, assuming that they can be expressed in an equivalent amount of Fe3+ 

ions. From an industrial perspective, traces of metals can be found in the stored mixture because of welding 

defects, new pipeline installations or material transfer between containers if inline filters have not been properly 

installed. On the other hand, organic matter can enter the equipment from the atmosphere if filters in the lunging 

line of the vessel with the environment have not been predisposed or well installed. In summary, contaminants 

can reliably enter the equipment only in the presence of design, operational or maintenance errors.  

As mentioned in Section 2.1, the impact of imp on the decomposition kinetics of the HP 50 %w/w aqueous 

mixture can be measured using a corrective factor cf. When imp increases, so does cf, resulting in a higher 

decomposition reaction rate and thus a greater amount of Qgen. This, in turn, reduces the value of rw,crit, allowing 

for better dissipation of the thermal power generated and preventing self-heating features from causing a 

runaway reaction. Figure 2 illustrates the trend of rw,crit as a function of cf for the HP 50 %w/w aqueous solution 

at an ambient temperature of 35°C. This trend will be compared to rw,crit obtained for the 50 %w/w HA to 

determine the value of cf that will equalize the critical vessel radius for both mixtures under analysis. 
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Figure 2: Critical vessel radius dependence on the kinetic corrective factor for the HP 50 %w/w aqueous solution 

compared to the value obtained for the 50 %w/w HA. Ambient temperature equal to 35°C. 

Based on the data in Figure 2, it is possible to determine that to maintain the same level of stability against 

thermal degradation, both HP and HA 50 %w/w solutions with a cf value of 7.5 should be stored in equipment 

with a critical radius rw,crit of 0.40, assuming an ambient temperature of 35 °C. To refine this information further, 

imp that corresponds to a cf value of 7.5 can be assessed using a correlation based on experimental data found 

in the literature (Cefic Hydrogen Peroxide Technical Committee, 2021). The analytical expression of the 

correlation is reported in Eq.(2), which is valid in the range 1  cf  7.76 with R2 of 0.99. 

 ωimp[𝑚𝑔/𝑘𝑔] = 2.361 ∙ 10−2 cf 3 − 2.027 ∙ 10−1 cf 2 + 6.509 ∙ 10−1 cf − 4.723 ∙ 10−1 (2) 

By utilizing the data extracted from Figure 2 and employing Eq(2), it has been quantified that the presence of 

3.4 mg/kg of Fe3+ impurities can disrupt the stability of the HP 50 %w/w aqueous solution until it reaches the 

same level of decomposition as the HA 50 %w/w. Additionally, the decision to select the ambient temperature 

is based on the need for a storage container that can prevent thermal runaway throughout all seasons, requiring 

consideration of the highest anticipated ambient temperature value. 

4. Conclusions 

The present work outlines a methodology based on the FKT for designing storage vessels and evaluating the 

safety of existing equipment. To clarify its implementation, this methodology has been applied to two industrial 

mixtures (50 %w/w HA and HP) free from contaminants in aqueous solutions. Through the primary sizing 

methodology outcomes, it was determined that HP 50 %w/w is more stable than HA towards thermal 

degradation exothermic reactions, as the characteristic equipment size for safe storage is higher for HP.  

However, it is worth noting that HP is sensitive to impurities. Indeed, in the presence of approximately 3.4 mg/kg 

of Fe3+ equivalent metallic contaminants, both materials exhibit the same decomposition tendency and rw,crit 

values. This underscores the importance of filters and safety barriers in preventing contamination scenarios and 

ensuring the safe storage of hazardous materials. 

Nomenclature

A - lateral surface, m2 

Bi – Biot number, - 

CA0 – initial main reactant concentration, mol/m3 

CP – mixture’s heat capacity per unit mole, J/mol K 

cf – kinetic corrective factor, - 

Ea – activation energy, J/mol 

kk – Arrhenius pre-exponential factor, s-1 

k’k – corrected Arrhenius pre-exponential factor, s-1 

kT – thermal conductivity, W/m K 

n – reaction order, - 

Qex - thermal power dissipated, W 

Qgen - thermal power generated, W 

r – cylindrical equipment radius, m 

Rg –universal gas constant, J/mol K 

rw,crit –critical characteristic system dimension, m 

Tamb - ambient temperature, K 

Tmax – maximum temperature reached in the bulk 

of the storage vessel, K 
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Tonset – onset temperature, K 

V - system volume, m3 

crit – critical value of the Frank-Kamenestkii 

number, - 

Hr – reaction enthalpy per unit mole, J/mol 

imp – quantity of Fe3+ impurities, mg/kg
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