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The widespread use of hydrogen as an energy carrier for road transport and industrial applications was 

indicated as a promising solution for reducing pollutant emissions. The high flammability of this substance and 

its tendency to permeate and embrittle most structural materials make hydrogen handling and storage 

inherently challenging. Hence, inspection and maintenance activities are essential to guarantee the 

components' integrity and fitness for service. However, guidelines for inspecting and maintaining hydrogen 

refueling stations are still under development. The manufacturer is responsible for indicating the optimal 

inspection procedures for each facility. The lack of a unified regulatory framework and the limited operational 

experience with these technologies make human errors a potential cause of undesired events. In this context, 

the study evaluates the probability of human error during the high-pressure storage system inspection 

procedures in hydrogen refueling stations. The Petro-HRA methodology has been used to quantify the 

likelihood of unsafe or inappropriate actions. In addition, a Bayesian Network approach is proposed to 

investigate the conditional dependencies among human errors and performance shaping factors. The critical 

analysis of the results allowed the authors to provide recommendations regarding safety procedures that 

operators can adopt to reduce the likelihood of accidents in the hydrogen industry. 

1. Introduction 

The global pursuit of clean and sustainable energy sources imposes a paradigm change in mobility. Hydrogen 

was largely indicated as a promising energy carrier to mitigate the environmental impact of road transport. 

Developing a widespread hydrogen distribution infrastructure presents substantial technical and economic 

challenges. Furthermore, the safety aspects associated with Hydrogen Refueling Stations (HRSs) represent a 

primary concern for the regulatory institutions, public, and industrial stakeholders (IEA, 2022). Considering the 

high flammability and low ignition energy of hydrogen gas and its tendency to permeate and degrade most 

structural materials, preventive maintenance approaches are preferable to corrective ones. Monitoring the 

presence of structural defects and propagation of cracks guarantees the physical integrity and fitness for 

service of the components. Inspection activities, commonly performed through Nondestructive Testing (NDT), 

allow to evaluate the degradation state of the components of the HRS and determine if corrective actions 

should be taken. Moreover, it was proven that a significant share of the total risk of failure in hydrogen 

refueling stations is associated with the H2 storage tanks (Campari et al., 2024). 

Several techniques can detect the presence of cracks and flaws triggered by the synergistic effect of 

mechanical loads, susceptible material microstructure, and high-pressure hydrogen gas (Campari et al., 

2023). Acoustic emission tests are used as a screening technique for the in-service inspection of pressure 

vessels. Even if performed by specialized personnel, the existing inspection protocols must be better adapted 

for hydrogen handling and storage equipment. In addition, the lack of operational experience with hydrogen 

technologies results in a higher risk of human errors, and one-time activities are particularly critical (Castiglia 

and Giardina, 2013). For example, the incident that occurred in 2019 at the refueling station in Kjørbo 
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(Norway) was caused by a human error during the maintenance of the hydrogen storage system and resulted 

in significant financial damage and a general loss of trust regarding hydrogen-based mobility. 

Human Reliability Analysis (HRA) aims to assess the risk of human errors by identifying potential incorrect 

actions, estimating their likelihood, evaluating the triggering factors, and proposing solutions to reduce the risk. 

In most cases, the parameters for the HRA are defined by specialists, are subjective, and are affected by high 

uncertainty. In addition, the consolidated HRA methodologies cannot account for the dependencies of Human 

Error Probabilities (HEPs) in related tasks. To address these limitations, the present study presents an 

integrated method for evaluating the impact of different factors on the reliability of an inspection through 

acoustic emissions of a storage tank in an HRS. A Bayesian Network (BN) complements the Petro-HRA 

methodology to reduce the inaccuracy in estimating the success probability and consider the conditional 

dependencies of all the tasks involved. This BN – Petro-HRA approach can increase the reliability of the 

inspections in hydrogen refueling stations, thus enhancing operational safety. 

2. Acoustic emission testing 

Type II tanks are steel cylinders with carbon or glass fiber filaments wrapped around their straight structure, 

commonly used in HRSs. They are used for stationary applications at operating pressures around 300 bar. 

The exposure to high-pressure H2 gas makes these components potentially prone to hydrogen-induced 

surface or subsurface cracking. If this material damage occurs, there is little evidence of deformations, and 

crack initiation is typically not visible (API, 2020). Specialized operators can perform inspections through 

nondestructive testing techniques to detect premonitory signs and allow the intervention before the failure 

occurs. Acoustic Emission Testing (AET) can detect flaws, cracks, and discontinuities in industrial equipment 

by measuring the energy released by the examined component under realistic operating conditions. Acoustic 

emissions originate when the material undergoes tension, and they are particularly intense when the elastic 

deformation turns to plastic (i.e., approaching the yield stress). Macroscopic cracks and defects in the material 

act as stress concentrators, emitting acoustic waves that are orders of magnitude more intense than those 

emitted by the surrounding area (Kumar and Mahto, 2013). The amplitude of the acoustic waves is 

proportional to the crack growth rate. AET is based on detecting these waves, converting them to electric 

signals, and analyzing them to locate the material defect. The sensitivity of the system is limited by 

background noise, which is eliminated by electronic filtering (API, 2018). AET equipment is selected based on 

the frequency (typically 30 kHz to 1 MHz), sensitivity (maximized at the natural frequency of the piezoelectric 

element), and working environment (in terms of background noise). Sensors and transducers are piezoelectric 

crystals that convert mechanical vibration into an electrical signal with the same frequency. Preamplifiers are 

placed near the transducers and are used to boost the voltage and guarantee sufficient cable drive capability. 

They are designed to reduce background noise signals. A bandpass filter eliminates low and high frequencies, 

and the clean signal travels to the system mainframe to be visualized, analyzed, and evaluated (ASME, 2023). 

The main advantage of AET over other NDTs is the possibility of dealing with changes in the material, such as 

crack growth, if the load is sufficient to determine the acoustic emissions. In addition, AET allows a complete 

volumetric inspection of the tank through multiple and properly located sensors. On the other hand, AE 

devices can only gauge qualitative indications about the degradation of the component. They should be 

combined with other NDTs (e.g., ultrasonic testing) to quantify the crack size and depth (ASME, 2023). 

 

Figure 1: Schematic of the AET setup for pressurized storage tanks 

3. Methodology 

The methodology for evaluating human errors during the inspection of hydrogen storage tanks relies on 

integrating BN into HRA. Firstly, the Petro-HRA methodology was used to quantify the likelihood of 

inappropriate actions during the inspection of a high-pressure storage system through acoustic emission 

Crack AE sensor

AE mainframe
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testing. Secondly, a Bayesian Network approach allowed for investigating conditional dependencies among 

human errors and Performance Shaping Factors (PSFs). 

3.1 Petro-HRA methodology 

HRA is a structured approach to systematically identify potential undesired events caused by human errors 

and estimating their probability. This analysis mainly aims to identify the tasks more prone to operators' 

incorrect actions and the factors influencing the likelihood of human error. The Petro-HRA method 

comprehends the definition of the scenario, data collection, task analysis, identification, modeling, and 

quantification of human errors, and the reduction of human error probabilities. It provides quantitative inputs 

for risk analysis and recommendations for facility management (Blackett et al., 2022). 

In this study, Petro-HRA is applied to obtain the probabilities for the BN. Therefore, the proposed approach 

can be roughly divided into six steps: 

• Scenario definition – It defines the boundaries of the analysis; in this case, inspecting a high-pressure 

storage tank to detect hydrogen-induced cracks through AET comprehends the test preparation, 

execution, completion, and data collection and interpretation. 

• Data collection – It comprehends the collection of qualitative information on the location, external 

environment, tasks that should be performed, duration of the procedure, systems involved, 

operational mode of the facility, and personnel roles and responsibilities. 

• Task analysis – It defines and structures the operators' tasks through a hierarchical task analysis 

(HTA) following the detect-diagnose-decide-act cognitive-behavioral model; it is based on the section 

devoted to nondestructive examination of pressure vessels of the ASME BPVC (ASME, 2023). 

• Human error identification – It identifies potential errors associated with the tasks, describes the 

consequences, and identifies the main influencing factors for the error probabilities. 

• Human error modeling – It identifies what human actions contribute the most to the overall risk of 

incorrect inspection by linking the errors with task steps. 

• Human error quantification – It quantifies the human error probability for each undesired event based 

on a nominal value and a set of performance shaping factors. 

The HEP is calculated by combining a base probability of 1% with nine PSFs accounting for the operator's 

characteristics, surrounding environment, and organization: 

𝐻𝐸𝑃 = 0.01 ∙ 𝑃𝑆𝐹𝑡 ∙ 𝑃𝑆𝐹𝑡𝑠 ∙ 𝑃𝑆𝐹𝑡𝑐 ∙ 𝑃𝑆𝐹𝑜𝑡 ∙ 𝑃𝑆𝐹𝑝 ∙ 𝑃𝑆𝐹ℎ𝑚𝑖 ∙ 𝑃𝑆𝐹𝑎𝑠 ∙ 𝑃𝑆𝐹𝑡𝑤 ∙ 𝑃𝑆𝐹𝑒 (1) 

where 𝑃𝑆𝐹𝑡 accounts for the available time, 𝑃𝑆𝐹𝑡𝑠 for the threat stress, 𝑃𝑆𝐹𝑡𝑐 for the task complexity, 𝑃𝑆𝐹𝑜𝑡 for 

the operator training, 𝑃𝑆𝐹𝑝 for the procedure, 𝑃𝑆𝐹ℎ𝑚𝑖 for the human-machine interface, 𝑃𝑆𝐹𝑎𝑠 for the attitude to 

safety, 𝑃𝑆𝐹𝑡𝑤 for the teamwork, and 𝑃𝑆𝐹𝑒 for the physical working environment (Blackett et al., 2022). 

3.2 Bayesian Network 

BN analysis is a probabilistic graphical model that allows the representation of probabilistic relationships 

between variables (nodes) and uses probability theory to deal with the uncertainty associated with conditional 

dependencies between variables (edges). A BN is typically represented as a directed acyclic graph where 

each node corresponds to a random variable, and each oriented edge connecting one node to another 

represents the conditional probability for the corresponding random variables (Zhang et al., 2024). According 

to Bayes’ theorem, considering two independent events (A and B), the conditional probability of A given B can 

be calculated by Eq. 2: 

𝑃𝑟(𝐴|𝐵) =
𝑃𝑟(𝐵|𝐴) + Pr(𝐴)

Pr(𝐵)
 (2) 

where 𝑃𝑟(𝐴|𝐵) is the conditional probability, i.e., the probability of event A given the event B (with Pr(𝐵) ≠ 0), 

Pr(𝐴) and Pr(𝐵) are the probabilities of event A and B without any conditions (referred to as prior or marginal 

probabilities), and 𝑃𝑟(𝐵|𝐴) is the probability of event B given the event A (Sivia and Skilling, 2006). 

A comprehensive summary of BN is provided in the literature in which the joint probability distribution of a set 

of random variables is calculated as per Eq. 3 (Leoni et al., 2019): 

𝑃(𝑈) =∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

 (3) 

where 𝑃(𝑈) is the joint probability distribution, 𝑃𝑎(𝑋𝑖) is the parent set of variables 𝑋, and 𝑛 is the number of 

sets.The HTA is mapped into a BN to reproduce the hierarchy of tasks through the graphical representation 

with edge-connecting nodes. The states of each node are specified by indicating if the task fails or succeeds. 
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The resulting BN is structured into three layers: the sub-tasks constitute the first layer, the tasks are the 

second, and the AET of the hydrogen storage tank is the third layer. 

4. Results and discussion 

Each task's generic human error probability is calculated by selecting the corresponding performance-shaping 

factors. Then, the most meaningful PSFs are indicated by a panel of experts. Attitude to safety, physical 

working environment, and operator experience have the same value for each task. The management is 

assumed to consider safety aspects during inspection operations, the weather conditions are favorable, the 

design of the facility is ergonomic, and the inspectors are appropriately trained to perform their activities. Task 

complexity, human-machine interface, procedure, and teamwork depend on the task considered. At the same 

time, the other PSFs (i.e., time and threat stress) have a limited impact on the HEP for this case study. Table 

1 summarizes the tasks for inspecting the hydrogen tank through AET performed chronologically. The HEP for 

each sub-task is estimated by combining the nominal task failure rate with nine PSFs. 

Table 1: Human error probabilities of the sub-tasks for the inspection of the hydrogen tank through AET 

Tasks Sub-tasks Type HEP 

1 

Tank isolation 

and draining 

1.1 Close the flow valve to isolate the vessel from the supply line Procedure 0.001 

1.2 Open the flow valve to the dispensing unit to drain the tank Procedure 0.001 

1.3 Check the pressure sensor on the storage unit to ensure it is empty Knowledge 0.01 

1.4 Close the flow valve to isolate the tank from the dispensing unit Procedure 0.001 

2 

Mounting and 

check of AET 

equipment 

2.1 Mount the AE sensors on the tank surface Skill 0.025 

2.2 Adjust signal processor settings Skill 0.025 

2.3 Verify the peak amplitude of the AE sensors and background noise Knowledge 0.05 

2.4 Verify if the AE system displays a correct location for the AE 

sensors 

Knowledge 0.05 

3 

Pressurization 

of the tank 

3.1 Open the flow valve between tank and inert gas source Procedure 0.001 

3.2 Fill the tank with inert gas at the pressurization rate of 3.45 MPa/h Procedure 0.1 

3.3 Check the pressure sensor on the storage unit to verity that the 

inner pressure is 110% of the service pressure 

Knowledge 0.01 

3.4 Close the flow valve between tank and inert gas source Procedure 0.001 

3.5 Verify if the peak amplitude of each sensor is greater than a 

specified value 

Knowledge 0.005 

4 

Data post-

processing 

4.1 Filter raw AE data to eliminate the background noise Skill 0.05 

4.2 Examine the distribution plots to locate the defects Skill 0.25 

4.3 Decide if further NTSs are needed to quantify the crack size   Skill 0.02 

The probabilities of tasks and sub-tasks have Boolean values, either “failure” or “success.” “Failure” indicates 

an unsuccessful or incomplete task, while “success” indicates a complete task. Figure 2 shows a graphical 

representation of the three-layered BN. 

 

 

Figure 2: BN model showing the probability of success of each task and sub-task of the AET 

412



Figure 2 quantifies the probability of successfully inspecting a hydrogen tank through AET. It is possible to 

observe that the inspection activity has a probability of 99.882% to be completed and detect an existing crack. 

This is verified when considering the optimal working environment, adequate attitude to safety, and sufficient 

training of the operators. However, the test’s performance depends on four steps. They have a relatively high 

chance of being appropriately performed, considering the HEPs associated with the sub-tasks. Table 2 

indicates that the likelihood of unsuccessful tank isolation and draining is extremely low due to the simplicity of 

the actions involved. In contrast, the data post-processing and interpretation are more critical since the 

procedure is not well defined, the tasks are inherently more complex, and the human-machine interface might 

be challenging to interpret. 

Table 2: Conditional probabilities of the tasks 

ID Task description Probability of success 

1 Tank isolation and draining 99.998 % 

2 Mounting and check of AET equipment 99.289 % 

3 Pressurization of the tank 98.905 % 

4 Data post-processing 93.293 % 

 

Figure 3 presents the sensitivity analysis and shows the strength of influence for each task and sub-task of the 

AET test. The thickness of the arrows indicates the strength of influence, while the colored elements represent 

the degree of sensitivity. 

 

 

Figure 3: Strength of influence and degree of sensitivity of each task and sub-task of the AET 

Task 4.2, associated with examining the distribution plots to locate the defects, dramatically influences the 

overall system performance. Other notable strong influences within the network, such as the route from sub-

task 1.3 through task 1 to the AET test, significantly impact the test results. It is related to the draining of the 

tank and can compromise the inspection completion if it is not performed correctly. Furthermore, strong 

influences are observed between pairs of sub-tasks and tasks, like sub-tasks 2.3 and 2.4 and task 2 

(indicating the verification of the peak amplitude, background noise, and location of the AE sensors), or sub-

task 3.2 and task 3 (indicating the pressurization of the tank at controlled rate). The strength of influence 

indicates the critical interactions within the system. The sensitivity analysis results show that any changes in 

task 1 significantly influence the outcomes of the AE test. This means that any variations in the PSFs of the 

sub-task of the tank isolation and draining significantly affect the success rate of the entire inspection activity. 

Untrained personnel with teamwork and managerial deficiencies could dramatically increase the likelihood of 

failure of this task. Despite its simplicity, the correct isolation of the tank is fundamental to completing the AET 

since it allows the pressurization of the tank, the emission of acoustic waves, and the data collection and 

interpretation. In general, the BN analysis reveals valuable insights into the complex system's dependencies 

and sensitivities, highlighting the need for clear procedures, trained personnel, and safety-informed 

management to ensure the reliability of test results. The advantage of this approach over a conventional HRA 

is that two or more tasks can share the sub-tasks without being considered more than once. In addition, any 

task or sub-task can be added to the existing BN model and dynamically updated. 
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Further exploration of the relationships between PSFs can enhance the robustness of the analysis. In addition, 

this research could be improved by integrating the BN into holistic approaches such as system theory or 

simulation modeling. A system-theoretic approach (e.g., the STAMP model) can analyze system safety, 

identify hazards, and implement feedback loops to enhance the system’s reliability and resilience (Nakhal et 

al., Patriarca et al., 2022). In simulation modeling, it is possible to build a digital system to test and identify the 

criticalities of the system (Simone et al., 2023). The future results will ensure model relevance and accuracy, 

leading to a more robust and practical approach to understanding and managing complex systems. 

5. Conclusion 

The HRA and BN analysis combination yielded insightful results when applied to the AET in hydrogen-related 

industrial facilities. The Petro-HRA methodology allowed the determination of the prior probabilities for the BN 

by considering nine performance shaping factors. Integrating various factors and their conditional 

dependencies provided a comprehensive understanding of the influence of human errors associated with AET 

to detect hydrogen-induced cracks. In addition, BN enables a more accurate estimation of the likelihood of 

failure through probabilistic inference, allowing for informed decision-making regarding safety measures and 

procedural adjustments. This study offers a quantitative approach to assess uncertainties and 

interdependencies within the system, thereby enhancing the reliability and effectiveness of risk management 

strategies in the context of complex inspection activities. Therefore, these findings can improve safety during 

inspection activities in the hydrogen refueling infrastructure and indicate the procedure's most critical steps. 
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