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In Europe, a comprehensive assessment of surface water bodies is hindered by a widespread deficiency in 

quality monitoring data, both spatially and temporally, which impedes sustainable water management. In light 

of this challenge, this paper proposes a multidisciplinary short-cut methodology to estimate the biochemical 

quality of rivers determined by primary anthropogenic pollution sources acting as the most significant pressure 

on surface water. 

The proposed methodology comprises three main steps:  

1. Identifying primary anthropogenic pollution sources and assessing their relative expected pressures 

on river water,  

2. Spatially allocating identified sources along the river using a raster-based approach, and  

3. Assessing the overall biochemical state of surface water.  

The industrial activities considered significant for river quality deterioration include establishments under the 

Seveso Directive, activities subject to the IPPC-IED discipline, and wastewater treatment plants. Contaminated 

sites are also considered, representing former industrial activities that continue to indirectly impact water bodies. 

To address the scarcity of monitoring data, the methodology relies on accessible official documentation for the 

assessment.  

The methodology was applied to a river basin exposed to various industrial pressures in the North of Italy. The 

obtained results have been compared with available water quality records to check the methodology's ability to 

reproduce the trend of measured data along the main river stem. The results of this preliminary investigation 

suggest that the developed approach has the potential to be a valuable tool for assessing biochemical river 

quality in regions with limited monitoring data. 

1. Introduction 

Surface water quality deterioration resulting from anthropic activities is a global concern (Vigiak et al., 2023) that 

requires to be addressed with robust and sustainable management strategies based on the knowledge of the 

actual water quality of rivers. However, in Europe, the assessment of the ecological status of waterbodies is 

often hampered by poor monitoring systems in terms of spatial and temporal coverage (Malaj et al., 2014), also 

posing a challenge to establishing correlations between water quality and the most significant anthropic 

pressures exerted upon a watercourse (Grizzetti et al., 2017). Among the heterogeneous pressures that can 

affect the ecological status of surface waters, industrial effluents stand out due to the wide variety of pollutants 

they introduce in the aquatic environment during normal operations (Adewumi et al., 2011).  

The assessment of surface water ecological status typically relies on index-based methods mainly dependent 

on monitoring data (e.g., Uddin et al., 2021; Mirauda et al., 2021), posing limitations in the case of unmonitored 

or poorly monitored watercourses. Some recent studies have attempted to overcome this constraint by defining 

approaches focused on characterizing the pollution sources affecting surface waters (e.g., Arrighi et al., 2010; 

Ouyang et al., 2015). However, these approaches do not allow for the identification of the most impacted 

sections of a river.  

637



In this context, an innovative short-cut methodology is proposed to assess the biochemical quality of surface 

waters at a basin or sub-basin level. Its main novelties are the procedure defined for the identification and the 

characterization of the most relevant pollution sources using public authoritative data and the approach defined 

to spatially allocate the results obtained from the characterization phase along a watercourse, taking into 

account the location of the sources and the hydrologic characteristics of the river. The methodology was applied 

to a sub-basin in the North of Italy (Emilia Romagna Region), and the results were analyzed and compared with 

the available monitoring data to validate their consistency.  

2. Methodology 

The present work proposed an index-based methodology to assess surface water's biochemical quality starting 

from easily accessible data on the pressures exerted on a defined area (i.e., on a basin or sub-basin). The 

approach comprises three main steps that will be described in the following sections: 

1. identification and characterization of the relevant anthropogenic pressures (Section 2.1), 

2. spatial allocation of the identified pressures along the river (Section 2.2), and  

3. assessment of the overall biochemical state of surface water considering the hydrological characteristics 

of the watercourse (Section 2.3).  

2.1 Identification and characterization of the anthropogenic pressures 

Industrial activities are considered the most significant anthropic pressure that affects surface water quality 

(Adewumi et al., 2011). Among these, establishments governed by Directive 2012/18/EU (Seveso activities) 

and Directive 2010/75/EU (IPPC-IED activities) are of particular concern as they potentially detain or produce 

substantial quantities of substances harmful to the aquatic environment (Shafiei Moghaddam et al., 2023). 

Additionally, wastewater treatment plants and contaminated sites are very likely to contribute to the overall 

oxygen demand of a watercourse: while wastewater treatment plants are a potentially significant source of 

nutrients to receiving water bodies (Su et al., 2021), contaminated sites are likely to contribute to pollutant levels 

in surface waters primarily due to run-off from former industrial areas (Chaudhry and Malik, 2017). Thus, Seveso 

establishments, IPPC-IED activities, Wastewater Treatment Plants (WWTPs) and Contaminated Sites (CSs) 

can be considered the most relevant typologies of anthropic pressures that affect the quality of surface water 

and were accounted for as reference pollution sources in the present assessment. 

The first step of the methodology involves the quantification of the pressure that can derive from the discharges 

of the abovementioned activity typologies through the Biochemical Pressure Index (BPI), which is defined as 

the product of five parameters which address the main characteristics of wastewater releases potentially harmful 

to surface water’s ecological status, as presented in Equation 1:  

𝐵𝑃𝐼 = 𝐷 ⋅ 𝑇 ⋅ 𝐹 ⋅  𝐻 ⋅ 𝑆                                                                                                                                       (1).       

In the equation, D represents the discharge type, T indicates the presence or absence of treatment before 

discharge, F addresses the fate of the discharge considering its receiving element, H indicates the presence or 

absence of hazardous substances toxic to the aquatic environment as defined in the Classification, Labelling 

and Packaging (CLP) Regulation (EC) No 1272/2008, and S represents the size of the discharge.  

The BPI is to be calculated for each pollution source (i.e., for each discharge) reported in the area of interest. 

The quantification requires retrieving the official documentation regarding each industrial activity (see Section 3 

for further details) and attributing a score to each parameter referring to the severity scale presented in Table 1. 

The scale was defined by expert judgment, and the choices were verified with an ex-post validity check (see 

Section 4). The scores for parameter D were attributed based on the classification provided by Directive 

91/271/EEC, which is widely employed to address anthropic discharges, ranging from uncontaminated surface 

run-off water to the most hazardous industrial wastewater. Parameters T and F allow to consider two crucial 

barriers to water pollution: wastewater treatment within activity premises and after discharge collection in the 

public sewer, respectively. In both cases, the absence of treatment implicitly indicates a higher pollution load 

into the water bodies. Regarding parameter H, the attribution reference is the lower and upper threshold values 

reported in Annex I, Part 1, section E of the Seveso Directive, and the scores are to be attributed per activity 

typology addressed. It is to be noted that for Seveso and IPPC-IED activities, the presence of hazardous 

substances toxic to the aquatic environment is evaluated only for discharges of typologies 3 and 4 (see 

parameter D, Table 1). Finally, parameter S accounts for the size of the discharge in terms of cubic meters of 

water discharged per year. This value is directly provided in the documentation or, alternatively, it can be easily 

derived from the Population Equivalent Ratio considering an average value of water flow treated per Population 

Equivalent. Moreover, considering that for small WWTPs the discharge rate is often not provided, it was 

assumed that in case of missing information, the discharge can be considered to be of the smaller size (i.e., 0.5 

score). 
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Table 1: Parameters and relative severity scale for the BPI index assessment. 

Parameter Attribute Score 

D Uncontaminated surface run-off water 1 

 Domestic wastewater 2 

 Contaminated surface run-off water and washing wastewater 3 

 Industrial wastewater 4 

T Yes 0.5 

 No 1 

F Public sewer 0.5 

 Surface water body 1 

H Absence  1 

 
Presence, regardless of quantity for IPPC-IED activities and to a lesser extent 

of the lower-tier requirements for Seveso activities 
1.5 

 
Presence in quantities between the lower-tier and upper-tier requirements for 

Seveso activities 
2 

 Presence exceeding the upper-tier requirements for Seveso activities 3 

S 0 – 103 m3/year 0.5 

 103 – 104 m3/year 1 

 104 – 105 m3/year 1.5 

 105 – 106 m3/year 2 

 106 – 107 m3/year 2.5 

 

In addition, given that WWTPs and CSs exhibit more homogeneous characteristics compared to Seveso and 

IPPC-IED sites, a set of reasonable assumptions was developed to simplify the characterization process by 

assigning predetermined scores to the parameters, as presented in Table 2. For what concerns WWTPs, the 

only parameter requiring determination is S, given that the size of the plants significantly affects the pollutant 

load on watercourses. Regarding CSs, only parameter H needs to be evaluated according to the reported state 

of remediation: a score of 1 is given if remediation is completed, while a score of 1.5 indicates ongoing 

remediation. As for the other activity typologies, these choices were verified with an ex-post validity check (see 

Section 4). 

Table 2: Common assumptions for BPI parameters assessment for WWTPs and CSs. 

Activity typology D T F H S 

WWTP 2 0.5 1 1 [0.5-3] 

CS 4 0.5 1 [1-1.5] 0.5 

 

2.2 Spatial allocation of the anthropogenic pressures along the river network 

The characterization of the anthropogenic pressure is followed by the spatial allocation of the pollution sources 

along the river network, considering their distribution within the area of interest (i.e., river basin or sub-basin). 

The procedure involves the identification of the hydraulic paths of each release point through a raster-based 

approach and adopting a Digital Elevation Model (Garbrecht and Martz, 1997; Lehner et al., 2008), and river 

segmentation (i.e., when an allocated source reaches the main watercourse, a new segment has to be defined).  

To spatially assess the total pressure exerted on the river analyzed, a Cumulative Biochemical Pressure Index 

(CBPI) is to be calculated as the sum of the BPI of each pollution source, considering its discharge location 

along the river, which corresponds to a specific river segment i, as presented in Equation 2: 

𝐶𝐵𝑃𝐼 =  ∑ 𝐵𝑃𝐼𝑖𝑖                                                                                                                                                  (2). 

The CBPI acknowledges the pollutant cumulation moving downstream since it also considers the BPI of present 

and previous (i.e., upstream) segments. Furthermore, it is to be noted that increasing index values are expected 

when moving downstream.  
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2.3 Assessment of the overall biochemical water quality  

The biochemical quality of surface water depends on the pollutant load related to the pressures exerted on the 

river and on the physical and chemical processes that naturally concur with the self-depurative capacity of 

watercourses (e.g., dilution, dispersion, biodegradation).  

The last step of the methodology consists of assessing the biochemical quality of surface water within the 

analyzed area, referring to the same river segments on which the CBPI attribution was performed. For this 

purpose, the Biochemical Quality Index (BQI) was defined – for a river segment i - as presented in Equation 3:  

𝐵𝑄𝐼𝑖 =
𝐶𝐵𝑃𝐼𝑖

𝐴𝑖
                                                                                                                                                       (3).  

In the equation, Ai is the drainage area extracted at each new discharge point along the watercourse, determined 

by adopting a Digital Elevation Model and employing specific GIS software tools (e.g., GRASS GIS tool), and 

CBPIi is the Cumulative Biochemical Pressure Index calculated for the river segment under examination with 

the same procedure described in Equation 2. It is important to note that the drainage area Ai can be considered 

a proxy of the expected river flow (Yang et al., 2019), thus, as a dilution parameter of the pressure load estimated 

in the previous phases.  

3. Case study 

A case study was designed to evaluate the proposed methodology. The catchment of the Reno River (Emilia 

Romagna Region, Italy) was selected for the application because of the numerous and heterogeneous anthropic 

pressures within the area and due to the availability of monitoring data necessary to verify the validity of the 

approach proposed. The defined case study area covers 971 km2 and contains 46 industrial activities (identified 

according to the approach presented in Section 2.1): 1 Seveso establishment, 4 IPPC-IED activities and 41 

WWTPs. Moreover, four active monitoring stations provide data on the biochemical status of surface waters. A 

representation of the area is provided in Figure 1a. 

According to the proposed methodology, the BPI was calculated for all the discharges of the industrial activities 

identified in the area. The documentation required for the characterization was retrieved from official sources, 

listed for the sake of completeness in Table 3. Subsequently, the CBPI and the BQI index were estimated along 

the river network.  

Table 3: Data sources employed for the characterization of the anthropic pressures. 

Activity typology Data source 

Seveso 
Bologna Prefecture, <prefettura.it/bologna/multidip/index.htm> 

IPPC portal of Emilia Romagna Region,<ippc-aia.arpa.emr.it/ippc-aia/Homepage.aspx> 

IPPC-IED IPPC portal of Emilia Romagna Region, <ippc-aia.arpa.emr.it/ippc-aia/Homepage.aspx> 

WWTP 

WWTPs database of Emilia Romagna Region, <datacatalog.regione.emilia-

romagna.it/catalogCTA/dataset/depuratori-della-regione-emilia-romagna-

1506530997461-718> 

 

The BQI values obtained by applying the proposed methodology to the Reno catchment were analyzed to verify 

the consistency of the proposed approach through the comparison of BQI values with actual water quality data, 

keeping the four monitoring stations as a reference. The analysis was performed by addressing the yearly 

average of the Chemical Oxygen Demand (COD) recorded at the four stations, given that this parameter can 

be considered directly correlated with the BQI as it represents a recognized indicator of the quality of surface 

waters. The COD data were retrieved from the Emilia Romagna environmental agency ARPAE portal 

<dati.arpae.it/>. 

4. Results 

The proposed methodology allows a straightforward semi-quantitative assessment of the biochemical status of 

surface water in a river basin, starting from the characterization of the anthropic pressures (i.e. the discharges 

of selected industrial activities) exerted on a river network.  

The methodology application to the case study area provided an assessment of the biochemical quality of 

surface water in the main river body through the assessment of the BQI. For the sake of clarity, Figure 1b 

presents the drainage areas and the BQI values obtained, ranging from 0 (in green) to 0.103 (in red). As 

expected, higher BQI values occur downstream. 
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Figure 1: a) Case study area representation with the position of the 46 industrial activities and the 4 monitoring 

stations; b) BQI values obtained for the main river of the analyzed network. 

 

First, the BQI values obtained in correspondence with the four monitoring stations were analyzed together with 

the yearly averaged COD recorded in the same locations to verify the consistency of the methodology. It is to 

be noted that BQI and COD values are not directly comparable. Thus, their trends were analyzed using different 

scales, as presented in Figure 2a. It can be seen from the graph that the BQI values obtained reproduce well 

the general water quality trend recorded along the river. 

Furthermore, the overall contribution of the activity typologies and the specific contribution of the single activity 

were assessed, taking the BQI value obtained at the basin’s closing section as a reference (Figure 2b). It is 

interesting to observe that, although the overall contribution to the BQI of the 41 WWTP plants is 67% of the 

total BQI, the specific contribution per single activity of this typology is only 6% (i.e. a single average WWTP 

impacts only for 6% on the overall water quality). Vice versa, the overall contribution of the only Seveso plant in 

the case study area to the BQI is 19%, and its specific contribution is 63%. These results are particularly 

interesting as they show that the methodology can take into account the intrinsic characteristics of the industrial 

pressures analyzed.   

 

 
Figure 2: a) Recorded average COD (left axis) and estimated BQI (right axis) considering the four monitoring 

stations within the case study area; b) Overall contribution of the activity typologies and specific contribution 

per single activity referring to the BQI value obtained at the basin’s closing section. 

5. Conclusions 

The index-based methodology presented in this paper provides a novel approach for a straightforward estimate 

of the biochemical water quality in a river catchment. The main novelties of the approach are the procedure 

defined for identifying and characterizing the significant anthropic pressures within an analyzed area, and the 

method proposed to acknowledge the evolution of the pollutant loads in the river network, also considering the 

self-depurative capacity of the watercourses. Notably, the methodology accounts for the normal operations of 
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the industrial activities identified as relevant pressures and considers an estimated average surface water flow 

in the river network.  

The application proposed in the case study, which employed the recorded quality data of a real-existing river 

catchment in the North of Italy, confirmed the capability of the methodology to take into account the intrinsic 

characteristics of the industrial pressures analyzed and to faithfully replicate variations in water quality along the 

river network. Clearly enough, the methodology proposed could be employed to implement water management 

plans, especially in the case of poor monitoring networks.  
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