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This study presents a low-cost IoT-based real-time water quality monitoring in Laguna Lake. By strategically 

deploying sensors and leveraging Artificial Intelligence, the systems provide accurate temperature, pH, and 

ORP data, enabling early detection of water quality issues. The inclusion of ORP, often overlooked due to cost 

and complexity, distinguishes this research. Artificial Intelligence optimizes sensor performance and provides 

timely alerts. A user-friendly web application facilitates data visualization and stakeholder engagement. Key 

findings include alarmingly low ORP levels (Average of 207.52 mV), indicating potential water contamination 

and low oxygen levels. This integrated approach empowers decision-makers with actionable insights for 

sustainable water resource management and protecting Laguna Lake's ecosystem. The system contributes to 

UN SDG 6: Clean Water and Sanitation by providing a cost-effective and efficient solution. 

1. Introduction 

Monitoring water quality is essential for protecting public health and ecosystems. Almetwally et al. (2020) 

proposed practical solutions to address global challenges and ensure sustainable water resource management. 

The 2030 UN Agenda and Sustainable Development Goals (SDGs) prioritize water quality issues by providing 

a cost-effective and efficient solution for clean water. The Laguna Lake Development Authority (LLDA) was 

established in the Philippines to oversee the lake's well-being. However, the LLDA faced problems in the 

traditional collection, analysis, and visualization of data in the smaller streams or rivers that flow into a larger 

body of water, such as a lake or river. Integrating ecosystem health and water poverty underscores the 

importance of solving the problems in this area with the support of technology, as mentioned by Leones et al. 

(2023). Traditional monitoring methods, relying on manual sampling and laboratory analysis, often need to 

provide timely data for effective water quality management (Jan et al., 2021). Remote monitoring and IoT 

technologies are crucial for addressing this challenge (Wang et al., 2021). Real-time data access and 

integration, enabled by IoT technologies, is crucial for monitoring the lake (DERN, 2021). Reliant on manual 

sampling and laboratory analysis, they often fail to provide the timely data essential for effective water quality 

management (Jan et al., 2021), necessitating innovative solutions using remote monitoring and IoT by real-time 

data access can be done (Wang et al., 2021). The study aimed to develop a low-cost IoT system for real-time 

water quality monitoring in the local region by providing real-time data, identifying trends, and enabling initiative-

taking management by alerting the stakeholders. Anthropogenic activities, particularly wastewater dumping, 

significantly deteriorate wetlands by increasing organic matter in these ecosystems, as mentioned in Acosta et 

al. (2023). The report of LLDA (n.d.) found that technological advancements have emerged to overcome the 

limitations of traditional manual monitoring methods. IoT-based systems offer a promising solution by enabling 

continuous monitoring of water quality parameters. For example, in the case of the lake's South Point and Canal 

Rivers areas, IoT sensors can be strategically placed to monitor water quality changes caused by urban runoff 

or industrial discharges. The progress in the contamination of rivers, as highlighted by Mamani et al. (2023), 

shows that the increasing contamination of rivers poses a significant health risk to those who use their surface 

water. Hui et al. (2020) utilized AI techniques to revolutionize water quality management using IoT sensors. 

Deep learning models can predict water quality trends, detect anomalies, and identify potential pollution sources 

(Randrianiaina et al., 2019). Data management and visualization are essential for informed decision-making 
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(Hui et al., 2020). GIS-based platforms can represent water quality data, facilitating analysis and identifying 

pollution hotspots (Boubakri et al., 2017). While previous research has shown that IoT-based systems are 

suitable for real-time water quality monitoring, there is a need to combine IoT and AI to improve how sensors 

work, analyze data, and show information in a way that is easy to understand (Chowdhury et al., 2023). This 

study aims to solve this gap by designing a low-cost IoT system that uses AI to combine data from different 

tributaries.  

2. Materials and methods 

2.1 IoT Sensor Network 

The researcher selected the DFROBOT sensors because they are small, work well with Arduino, and are 

affordable and durable. Although these sensors offered a suitable balance of accuracy and affordability, with a 

unit cost of $50-$180, Integrating these sensors with Arduino boards and communication modules added to the 

overall system cost of $350, it remained significantly lower than comparable commercial monitoring systems. 

We calibrated the sensors to minimize costs according to the DENR AO 2016-08 Water Quality Guidelines and 

General Effluent Standards of 2016. 

2.2 Data Transmission Module 

Sensor data was transmitted to a cloud server using a secure wireless communication protocol. The chosen 

protocol considered data transmission rate, power consumption, and network coverage. An Arduino Uno R3 

microcontroller was employed at each sensor node to preprocess data before transmission. 

2.3 Data Processing and Visualization Platform 

We transmitted the data to a cloud-based platform to manage and interpret water quality. We developed this 

centralized system to store, process, and visualize the collected water quality data. This centralized system 

incorporated the cloud incorporated Beebotte, a third-party tool, for initial data handling and transmission to an 

AWS server for advanced analytics. GIU presented real-time and historical water quality information, 

empowering stakeholders with data-driven insights for informed decision-making. 

2.4 Data Collection 

Data collection involved two primary sources: historical data and real-time sensor measurements. Historical 

water quality data from 2017 to 2022 was a comparison and model training baseline. Building upon the findings 

of Ebron et al. (2020), which identified three positively correlated water quality parameters, we focused on these 

parameters for our analysis. The researcher continuously collected real-time data from the deployed IoT sensors 

at the two selected stations. The researcher cleaned up the data to fix problems like missing information, 

incorrect values, and noise. 

2.5 Data Analysis 

The researcher employed cloud-based, incorporated AI-powered tools for data processing, pattern recognition, 

or anomaly detection. Descriptive statistics and correlation analysis using Rapid Miner and Python programming 

to assess parameter relationships. The research computed a Relative Weight Index (RWI) to assess water 

quality conditions comprehensively. This numerical value assigned to each parameter reflects its relative 

importance in overall water quality assessment. Parameters with higher RWIs contribute more significantly to 

the overall WQI. The researcher determines RWIs through expert opinion, statistical analysis, or both. RWI 

values usually range from 1 to 5, with 5 indicating the highest importance. RWI helps balance factors' influence 

on water quality assessment. Machine learning algorithms were also employed to develop predictive models for 

identifying patterns and trends Randrianiaina et al. (2019). 

Table 1: Sensor Deployment and Data Collection for Prototype Testing 

Location  Sensor ID Deployment Date Data Collection Period  

South Point Station 1 January 15, 2022 May 1, 2022 – May 14, 2023 

Canal River Station 2 Jan 15, 2022 May 1, 2022 – May 14, 2023 

164



3. Results and Discussion 

3.1 IoT Sensor Network 

The map in Figure 1 shows the monitoring stations in Cabuyao City. We set up two IoT sensor stations at South 

Point and Canal River, following the advice of an expert engineer from LLDA. Each station had sensors to 

measure pH, temperature, and ORP. The system collected data every hour from May 1 to May 14, 2023.  

(a) (b) 

 

 

  

 

 

 

Figure 1: (a) Map of the study for Station 1, (b) Map of the study Station 2 

Table 2: Sensor Deployment and Data Collection for Prototype Testing 

Location  Sensor ID Deployment Date Data Collection Period  

South Point Station 1 January 15, 2022 May 1, 2022 – May 14, 2023 

Canal River Station 2 Jan 15, 2022 May 1, 2022 – May 14, 2023 

3.2 Data Transmission Module 

Table 2 shows that the DS18B20 temperature sensor, operating at a fixed rate of 16.3 kbps, demonstrated 

consistent performance with an average packet loss of 2 % under optimal conditions (distance of 10 meters, 

minimal interference). While this rate is moderate, the sensor's low power consumption of 20 mA is 

advantageous for battery-powered applications. 

Table 3: Data Transmission Metrics 

Parameters Average Max Min Data Pocket 

Loss Rate 

Average Power 

Consumption 

Temperature (DS18B20) 750 ms 16.3 kbps 750 ms    2 % 20mA 

pH (SENO161V2) 

ORP 

9600 to 19200 baud 

9600 to 19200 baud 

115200 baud 

115200 baud 

1200 baud 

1200 baud 

< 1% 

< 1% 

100–200 mW 

100-300 mW 

ms – milliseconds      mW- milliwatts 

The study focused on monitoring the water quality intended for using freshwater or the Class C classification to 

grow fish and other aquatic resources based on the DENR-Water Quality Guidelines (WQG). 

Table 4: DENR Water Quality Parameters 

Parameter DAO-2016-08  

Standard (Class C) 

Compliance  

Temperature (°C) 

pH 

ORP (mv) 

25 – 31 

6.5 – 9.0 

600 – 800 mV 

Acceptable 

Acceptable 

Low value 

 

 

Note:  

- The samples were taken from 9:00 am – 4:00 pm 

- The natural background temperature, as determined by EMB shall prevail if the temperature is lower or higher than the 

WQG, provided that the maximum increase is only up to 10 % and will not cause any risk to human health. 

The notably low ORP value of 207.52, as indicated in Table 2, is significantly lower than the typical ORP range 

of 200-700 mV in freshwater environments. Low-value ORP suggests a pronounced reducing environment, 

potentially due to elevated organic matter, reducing substances, or stagnant conditions. A low ORP generally 

indicates a lack of oxygen and can be associated with poor water quality, anaerobic conditions, and the potential 

for harmful bacteria growth. Conversely, a high ORP often suggests a well-oxygenated environment, which is 

generally desirable but can be excessive, harming aquatic life. To fully comprehend the implications of this low 
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ORP, it is crucial to correlate it with other water quality parameters such as organic matter, nutrient, and bacterial 

levels. Examining surrounding land use and historical water quality data will provide valuable context. 

3.3 Data Processing Visualization 

The GUI features a dashboard that utilizes Google Maps to display the on-site location, providing a visual context 

for the data. Circular gauges display numerical values, such as pH, temperature, or ORP. Bar gauges are used 

to compare values, and dial gauges will visually represent a range of values. These interactive gauges allow 

users to hover over them for details, zoom in or out, and view real-time updates. Users can quickly identify 

trends or anomalies by observing changes in the gauges over time. Additionally, gauges can compare data from 

separate locations or periods, facilitating effective monitoring and analysis. The dashboard's functionality allows 

users to interpret and analyze the data quickly. It provides data filtering and customization, and collected data 

is integrated into reports to inform policy decision-makers. Users can filter data by time and view different water 

quality parameters individually or in combination. Furthermore, the dashboard allows users to download data in 

CSV or PDF format for further analysis or integration with other systems. The analytics page offers additional 

visualizations, such as scatter plots and boxplots, for in-depth data analysis. By providing these features, the 

dashboard effectively supports decision-making by offering a user-friendly interface for accessing and analyzing 

water quality data. 

 

 

Figure 2: Analytics dashboard of the website 

  

 

 

   

 

Figure 3: Heat Map for each parameter for decision-making 

The heat maps in Figure 3 in the dashboard are integrated with Google Maps to show the location of different 

water quality measurements. By looking at these maps, users can easily see where the temperature, pH, and 

ORP levels are high or low to help identify areas with water pollution problems. Users can find connections 

between water quality and location by analyzing the heat maps and the time series data (Jan et al., 2021). By 

looking at these maps, users can easily see where the temperature, pH, and ORP levels are high or low to help 

identify areas with water pollution problems. Users can find connections between water quality and location by 

analyzing the heat maps and the time series data (Jan et al., 2021). For example, Station 2, with more factories 

or residents, has different water quality levels compared to areas with less human activity, like Station 2. 

Stakeholders can collect data to decide on ways to improve water quality in specific areas (Chowdhury et al., 

2023). 

3.4 Data Collection 

The study utilized historical water quality data from LLDA from 2017 to 2022. This dataset, encompassing 712 

data points from various monitoring stations, served as the training dataset for model development. The dataset 
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included parameters such as pH, temperature, and other relevant water quality indicators. The researcher 

performed preprocessing to manage missing values and outliers. Data validation was conducted by cross-

referencing LLDA's published reports and internal quality control procedures. Ebron et al. (2020) adapted data 

collection and analysis procedures to enhance the dataset. 

3.5 Data Analysis 

The provided Table 1 presents real-time water quality data collected from two (2) pilot stations. 

Table 5: Station 1 and 2 Real-time Data Sample 

 Reading ID ORP  

Reading 

Ph 

 Reading 

temp 

 

% Diff. from  

Reading Mean 

Calibrated   

pH Reading 

Date /Time  Timestamp  

in 

milliseconds 

66431ce22e2dc747c42071b8 218 6.98 25 -0.35 % 7.05 02/14/22 3:12 pm 1.71567E+12 

66431cdd2e2dc747c42971a4 218 7.06 25 0.80 % 7.13 02/14/22 3:12 pm 1.71567E+12 

66431cd82e2dc747c42071a4 218 6.98 25 -0.35 % 7.05 02/14/22 3:12 pm 1.71567E+12 

66431cd82e2dc747c429718c 218 7.06 25 0.80% 7.13 02/14/22 3:12 pm 1.71567E+12 

66431cd32e2dc747c420716b 218 6.98 25 -0.35 % 7.05 02/14/22 3:11 pm 1.71567E+12 

 

Descriptive statistics summarize the collected data, including mean, median, standard deviation, and range from 

water quality parameters. Table 1 below shows that the water quality parameters analysis revealed that both 

stations' temperature and pH levels were within acceptable limits for Class C water bodies. However, the 

consistently low ORP values at both sites are cause for concern, as they indicate potential water quality issues. 

The researcher used the Relative Weight Index (RWI) method. This method calculates the water quality rating 

scale, relative weight, and overall WQI using the function formula below, suggested by an expert from LLDA. 

The relative weight per parameter is distributed equally to 100 % in the research; however, if more parameters 

participate in future studies, the percentage per parameter will differ. 

 

Table 6: Descriptive Statistics Summary 

Parameters  Mean Min Max  Standard (Class C) Compliance 

Temperature  Station 1 

Station 2 

25 

27 

25 

27 

25 

25 

 25 – 31 

 

Acceptable 

  

pH 

 

ORP 

Station 1 

Station 2   Station 

1  

Station 2 

7.004 

7.22 

211.53 

270.63 

6.87 

6.93 194 

220 

7.12 

7.35 

227               

2952 

 6.6 -9.0      

 

 600 -800 mV 

 

Acceptable  

 

NOT Acceptable 

ms – milliseconds      mW- milliwatts 

To draw more conclusions, the provided correlation matrix offers preliminary insights into the relationships 

between temperature, pH, and ORP in the dataset. The researchers observed the following results below. 

 

 

Figure 4: Correlation Analysis of parameters 

The correlation matrix shows a weak -0.009 connection between the ORP and pH levels. However, both 

parameters’ levels change over time. The collected parameters provided valuable insights into potential 

relationships with algal blooms, even though not included in this study. Seasonal changes in pH levels may 

correlate with rainfall, temperature, and organic matter decomposition, impacting aquatic life and water quality. 

Rising temperatures can create favourable conditions for algal growth. Data analysts can analyze the system's 

f (Overall relative weight of each parameter) = Average of the parameters) x (rating of each parameter) x 

(Assigned weight of each parameter) 

Overall relative weights of all parameters = (relative weights of parameter 1) +  

(relative weights of parameter 2)+ (relative weights of parameter 3) 

(1) 
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data to identify potential correlations with algal bloom occurrences, as the DENR (2021) suggested. Additionally, 

low ORP levels, often indicating pollution, can be monitored to detect potential pollution and take appropriate 

action. If the system detects a significant drop in ORP levels, the water is not good at cleaning itself, indicating 

reduced dissolved oxygen. Local authorities or environmental agencies can immediately increase water 

aeration, investigate potential pollution sources, and issue public advisories. The system triggers alerts for 

industrial plants around the lake when ORP levels fall below a predetermined threshold. Local governments can 

use the data to inform decisions regarding water allocation, pollution control measures, and public advisories. 

Moreover, if the system detects elevated pollutant levels, authorities can implement restrictions on industrial 

discharges or initiate cleanup efforts. Additionally, the data can raise community awareness about water quality 

issues and engage them in conservation efforts through the dashboard for visualizing real-time and historical 

data. This dashboard will facilitate stakeholder communication. Local governments can leverage the data to 

adjust water allocation policies, implement pollution control measures, and issue public advisories. This 

integration will enable decision-makers to utilize the data effectively. 

4. Conclusion 

This research successfully developed and deployed a low-cost IoT-based real-time water quality monitoring 

system. The system effectively collected and transmitted data to a cloud-based platform. The web application 

underwent user acceptance testing with positive feedback from the stakeholders. The system's ability to notify 

relevant stakeholders, such as local authorities, environmental agencies, and nearby communities, about the 

potential water quality issue. In conclusion, ORP can be a valuable tool for indirectly estimating dissolved oxygen 

levels, especially when combined with pH and temperature. Future research should focus on expanding the 

sensor network and exploring advanced machine-learning techniques to enhance the system's capabilities. By 

addressing the challenges of traditional monitoring methods, the developed IoT-based system provides a 

foundation for initiative-taking and data-driven approaches to water quality management in Laguna Lake. 
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