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This study evaluates the effectiveness of various regression models in predicting the physicochemical properties 

of biochar, essential for sustainable agriculture and environmental remediation. A comprehensive review of 

recent literature compared the predictive accuracies of linear, non-linear regression (NLR), quadratic, and 

multiple linear regression (MLR) models. Findings highlight that MLR models perform exceptionally well, with 

R² values exceeding 0.92, particularly in predicting complex interactions like cation exchange capacity (CEC) 

and electrical conductivity (EC). NLR models also demonstrated strong performance, achieving high median R² 

values, especially in predicting High Heating Value (HHV), with R² values up to 0.9802. Pyrolysis Temperature 

(PT) was identified as a frequent and significant predictor for properties such as EC and nitrogen content. 

However, properties like CEC and Specific Surface Area (SSA) presented challenges due to inconsistencies 

between high R² and higher Root Mean Square Error (RMSE) values, indicating underlying variability. Municipal 

Solid Waste (MSW) biochar was the most challenging to predict due to its heterogeneous composition. This 

study advocates for integrating MLR with non-linear techniques to develop hybrid models, enhancing predictive 

accuracy and practical usability, and optimizing biochar utilization in agriculture and environmental remediation. 

1. Introduction 

Biochar, derived from biomass pyrolysis, has garnered attention for its applications in soil improvement and 

environmental remediation (García et al., 2021). Incorporating biochar into agriculture enhances soil fertility, 

boosting nutrient availability and crop yields. It also aids in preventing nutrient leaching and conserving water 

by retaining moisture in the topsoil, contributing to enhanced crop output and improved water and nutrient 

efficiency (Mylavarapu et al., 2013). Chen et al. (2023) identified regression modelling as the most effective 

method for predicting the physicochemical properties of biochar among all machine learning techniques. 

However, there has been no comprehensive review on which specific type of regression modelling is best suited 

for biochar's physicochemical properties prediction. This presents a significant research gap, particularly in 

understanding the comparative efficacy of different regression models for predicting biochar's physicochemical 

properties. This study aims to bridge the knowledge gap by evaluating the performance of linear, non-linear 

regression (NLR), quadratic, and multiple linear regression (MLR) models in predicting biochar's properties. The 

analysis will focus on their predictive accuracy, as measured by R² values and Root Mean Square Error (RMSE), 

and their practical application in biochar production. The ultimate goal is to identify the most effective models 

that can be tailored to the unique characteristics of biochar and its diverse applications. Future research will 

likely explore integrating traditional regression models with advanced machine learning algorithms to develop 

hybrid models. These models aim to enhance predictive accuracy and practical usability, supporting more 

effective biochar utilization in agriculture and environmental remediation.  

2. Review method 

The data was collected from research articles published between 2016 and 2022, spanning various journals 

related to biochar production and utilization. The search terms included keywords such as "biochar," 
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"physicochemical properties," "regression modelling". Relevant articles underwent screening, and data of 

predictors, predicted variables, model types, biomass content, 𝑅2 values and RMSE were extracted. 

3. Regression models for predicting physicochemical properties of biochar 

In evaluating regression models for predicting the physicochemical properties of biochar, Linear, quadratic, NLR 

and MLR models were analyzed. Table 1 provides an overview of the proposed regression models, highlighting 

their performance metrics and applicability in predicting biochar's physicochemical properties. 

Table 1: Regression models in predicting physicochemical properties of biochar 

Model Predictor Predicted 
variables 

Biomass Category N R2 RMSE Reference 

Linear Weight CEC Animal-Derived Residues, Forest 
Residues, Industrial Residues, 
Agricultural Residues  

20 0.97 5.90 (Lago et al., 2021) 

Linear C CEC Animal-Derived Residues, Forest 
Residues, Industrial Residues, 
Agricultural Residues 

20 0.96 15.52 (Lago et al., 2021) 

Linear PT EC Agricultural Residues 21 0.66 1.30 (Morais et al., 2021) 
Linear PT EC Animal-Derived Residues 21 0.67 0.20 (Morais et al., 2021) 
Linear Ash HHV Animal-Derived Residues, Forest 

Residues, Agricultural Residues, 
MSW 

52 0.92 1.99 (Chen et al., 2022) 

Linear C, H, O, N, 
VM, FC, Ash 

HHV Municipal Solid Waste (MSW) 67 0.63 2.50 (Mari Selvam and 
Balasubramanian, 
2023) 

Linear PT N Agricultural Residues 21 0.89 0.80 (Morais et al., 2021) 
Linear PT N Animal-Derived Residues 21 0.92 1.60 (Morais et al., 2021) 
Linear PT N loss Agricultural Residues 21 0.80 5.60 (Morais et al., 2021) 
Linear PT N loss Animal-Derived Residues 21 0.96 2.70 (Morais et al., 2021) 
Linear N/A Yield Agricultural Residues 77 0.82 N/A (Narde and Remya, 

2022) 
Quadratic H/C, O/C Aromaticity Animal-Derived Residues, Forest 

Residues, Agricultural Residues 
98 0.89 0.09 (Cao et al., 2021) 

Quadratic PT EC Agricultural Residues 21 0.93 0.60 (Morais et al., 2021) 
Quadratic PT EC Animal-Derived Residues 21 0.67 0.20 (Morais et al., 2021) 
Quadratic PT N Agricultural Residues 21 0.99 0.20 (Morais et al., 2021) 
Quadratic PT N Animal-Derived Residues 21 0.94 1.30 (Morais et al., 2021) 
Quadratic PT N loss Agricultural Residues 21 0.98 1.60 (Morais et al., 2021) 
Quadratic PT N loss Animal-Derived Residues 21 0.96 2.60 (Morais et al., 2021) 
Quadratic PT pH Agricultural Residues 22 0.60 N/A (Rafiq et al., 2016) 
NLR PT, H/C HHV Agricultural Residues 18 0.98 N/A (Ortiz et al., 2020) 
NLR C,H HHV Animal-Derived Residues, Forest 

Residues, Agricultural Residues  
1566 0.89 N/A (Yaka et al., 2022) 

NLR PT, H/C O/C Agricultural Residues 18 0.99 N/A (Ortiz et al., 2020) 
NLR PT, H/C pH Agricultural Residues 18 0.96 N/A (Ortiz et al., 2020) 
NLR VM,AC,PT Yield Agricultural Residues 112 0.89 6.25 (Narde and Remya, 

2022) 
MLR PT, H/C EC Agricultural Residues 18 0.92 N/A (Ortiz et al., 2020) 
MLR PT, H/C H/C Agricultural Residues 18 0.99 N/A (Ortiz et al., 2020) 
MLR C,N,O HHV Animal-Derived Residues, Forest 

Residues, Agricultural Residues, 
MSW 

52 0.93 1.84 (Chen et al., 2022) 

MLR C,H HHV Animal-Derived Residues, Forest 
Residues, Agricultural Residues, 
MSW 

1566 0.88 1.79 (Yaka et al., 2022) 

MLR C, H, N, S, 
MC, Ash, PT 

SSA Animal-Derived Residues, Forest 
Residues, Industrial Residues, 
Agricultural Residues, MSW  

292 0.29 10.87 (Hai et al., 2023) 

MLR C, H, N, S, 
MC, Ash, PT 

Yield Animal-Derived Residues, Forest 
Residues, Industrial Residues, 
Agricultural Residues, MSW  

292 0.82 4.76 (Hai et al., 2023) 

MLR PT, H/C Yield Agricultural Residues 18 0.96 N/A (Ortiz et al., 2020) 

The analysis of Figure 1, which depicts the distribution of R² and RMSE values for various predicted variables 

using different regression models, reveals several key insights into the models' predictive performance for 

biochar properties. Most reported R² values are above 0.6, indicating that the regression models generally 
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provide a good fit for predicting the physicochemical properties of biochar. However, there are notable 

inconsistencies between high R² values and RMSE values, particularly for certain variables. HHV predictions 

are comparatively easier for regression models to capture, with the highest R² of 0.98 achieved using NLR by 

Ortiz et al. (2020). The RMSE values for HHV range from 1.80 to 2.5, indicating good predictive accuracy, but 

with variability suggesting that simpler linear models may not adequately capture the complexity of HHV. 

            

Figure 1: Distribution of (a) R2; (b) RMSE by Predicted Variables. n=number of studies  

MLR models for predicting EC demonstrate high predictive accuracy, with the highest R² of 0.92 reported by 

Ortiz et al. (2020). The RMSE values for EC are relatively low, ranging from 0.2 to 1.3, indicating high accuracy, 

yet the variability in RMSE values highlights the significant influence of biomass type and pyrolysis conditions 

on the predictive performance. 

Interestingly, while CEC shows high R² values, such as 0.97 reported by Lago et al. (2021) using a linear model, 

the RMSE values are not correspondingly low, ranging from 5.9 to 15.52. This discrepancy suggests that 

although the models explain a significant portion of the variance, there are underlying factors contributing to 

higher errors in prediction. One potential reason for this could be the significant variability in CEC values across 

different types of biochar. Gaskin et al. (2008) explained that CEC is influenced by the type of biomass and the 

temperature of biochar production. Manure-derived biochar tends to have higher CEC values compared to 

woody biochar, with CEC values such as 57.50 cmol/kg for algal biochar and 48.4 cmol/kg for poultry litter 

biochar at 500 °C, compared to 29.90 mol/kg for orange pomace-derived biochar (Tag et al., 2016). This inherent 

variability in CEC values can lead to higher RMSE despite high R² values, as the models must account for a 

wider range of values and conditions. 

Yield predictions show high R² values, particularly in MLR models (up to 0.96), with RMSE values ranging from 

4.76 to 6.25, indicating good accuracy but also highlighting the need for more precise models to capture the 

influence of volatile matter, ash content, and pyrolysis temperature on yield. 

Nitrogen content and nitrogen loss predictions achieve high accuracy with quadratic and MLR models, reflected 

in high R² values (up to 0.99) and low RMSE (ranging from 0.2 to 5.6), indicating the models' effectiveness in 

capturing temperature-related impacts. The high R² values and low RMSE for nitrogen loss suggest that these 

models are well-suited for scenarios involving significant temperature effects on nitrogen dynamics. 

Variables such as Aromaticity, O/C, H/C, and SSA that have a small number of studies (𝑛 =1) indicate that the 

results might not be broadly representative. These results are more susceptible to variability and may not 

generalize well to other contexts. These complex interactions and dependencies make it challenging for 

regression models to achieve consistent predictive accuracy across different studies and conditions. 

Figure 2 illustrates the range of R² and RMSE values by model type and Figure 3 illustrates the sample size (N) 

vs R2 by model type, providing a comparative performance analysis of these models. 

            

Figure 2: Range of (a) R2 and (b) RMSE by Model Type  

(a) (b) 

(a) (b) 
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Figure 3: Sample Size (N) vs R2 by Model Type 

MLR demonstrates the best overall performance among the evaluated models. It has the highest median R² 

value, indicating superior effectiveness in explaining variance, and a narrow interquartile range (IQR), reflecting 

consistent performance. The presence of a dot below the whisker in Figure 2 indicates an outlier with a lower 

R² value. Figure 3 shows R² values decrease with an increase in sample size. Most studies reviewed used low 

sample sizes, ranging from 18 to 292, with only one study exceeding 1000. This trend of limited sample sizes 

may impact validity, making findings less generalizable and suitable for machine learning models that risk 

overfitting. High R² values might not accurately reflect the model's performance on new and unseen data. When 

MLR models encounter multicollinearity, different sample sizes (N), and outliers, the reliability, stability, and 

interpretability of the regression coefficients are compromised (Akinwande et al., 2015). Despite the minor 

outlier, MLR models maintain a robust fit to biochar data, with the lowest median RMSE values, underscoring 

MLR's potential in integrating multiple predictors for improved biochar production decisions. 

NLR exhibits strong performance, with a high median R² value, marginally lower than that of MLR, and a narrow 

IQR indicating consistent model reliability. Despite their computational intensity, NLR models excel in 

accommodating complex patterns, rendering them suitable for capturing the intricate dynamics inherent in 

biochar-treated soils (Liu et al., 2018). The low median RMSE values highlight their predictive accuracy, 

although with slightly less consistency compared to MLR.  

Quadratic Regression demonstrates moderate performance, characterized by a median R² value lower than 

both MLR and NLR. The larger IQR indicates higher variability in model effectiveness. Quadratic models, which 

are second-degree polynomials, are moderately effective in handling non-linear relationships but are sensitive 

to outliers, affecting their reliability (Henson and Friston, 2007). The moderate median RMSE values indicate 

higher prediction errors compared to MLR and NLR, underscoring their limited accuracy. 

Linear Regression exhibits the lowest performance, marked by the lowest median R² value and the largest IQR, 

indicating significant variability and frequent poor performance. These models often fail to capture the complex 

interactions within biochar systems, resulting in the highest median RMSE values and the least accurate 

predictions. The presence of highly negatively correlated features can lead to inflated coefficients that may 

cancel each other out, further skewing results (Iqbal, 2020).   

Figure 4 represents the range of R² and RMSE values by biomass category, highlighting the variability and 

performance of different regression models across various biomass types. 

    

Figure 4: Range of (a) R2 and (b) RMSE by Biomass Category  

Animal derived residues, co-substrates and agricultural residues categories with higher median R² values 

suggest models with better explanatory power for those specific biomass types, indicating that the chosen 

independent variables are highly effective in predicting the predicted variable for these categories. MSW exhibits 

a low median in R² and a high IQR in RMSE as the content of MSW is inherently challenging due to its 

(a) (b) 
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heterogeneous composition, variable generation rates, inconsistent data collection methods, and seasonal 

variations (Chandra et al., 2021). These complexities lead to lower accuracy and limited predictive power for 

models dealing with MSW. 

 

Figure 5: Predictor counts  

Figure 5 shows the frequency of predictors that applied in predicting the biochar properties. PT stands out with 

a higher predictor count, exhibiting strong explanatory power in predicting EC and N properties. For EC 

prediction, PT demonstrated high significance across both MLR and quadratic models, with R² values ranging 

from 0.92 to 0.93. PT showed high significance across both linear and quadratic models, with R² values ranging 

from 0.89 to 0.99 for N related properties.  

4. Conclusions 

This research highlights the complexities involved in modelling biochar properties and demonstrates that no 

single model uniformly outperforms others across all scenarios. While linear models often fall short in capturing 

the dynamic interactions within biochar systems, non-linear and polynomial models provide greater flexibility in 

dealing with complex, variable-dependent reactions. MLR emerges as a particularly robust method for 

operational applications, allowing for the integration of multiple variables that influence biochar's effectiveness 

in soil improvement. However, its reliance on assumptions about linear relationships may limit its accuracy, 

highlighting the necessity for integrating MLR with non-linear approaches to fully capture the multifaceted nature 

of biochar interactions. Future studies should focus on developing hybrid models that merge the predictive 

power of machine learning algorithms with the interpretability of traditional regression methods. By adopting a 

strategic approach that combines the strengths of different modelling techniques, practitioners can significantly 

enhance the precision and applicability of biochar utilization, contributing to more effective environmental 

management and agricultural practices. 

Nomenclature 

AC – Active Carbon                                                 MC - Moisture Content 

C – Carbon                                                              N – Sample Size 

CEC  – Cation Exchange Capacity                    NLR – Non-linear Regression 

EC – Electrical Conductivity                                  n – Number of studies 

HHV – High Heating Value                                  PT – Pyrolysis Temperature 

IQR – Interquartile range                                                R2 – Coefficient of Determination  

ML – Machine Learning                                                RMSE  – Root Mean Square Error 

MLR – Multiple Linear Regression                     SSA – Specific Surface Area 

MSW – Multiple Solid Waste                                   VM – Volatile Matter 
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