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Recently, graph-theoretic methods have increasingly been employed to generate near-best (n-best) heat 

recovery networks, aiming to maximize energy recovery efficiency. The exploration of these n-best networks 

has proven pivotal for making informed decisions. Nevertheless, existing studies in this domain have not 

attempted to study the favourability of these generated networks based on their respective dynamic control 

performance. This performance metric reflects the network’s ability to maintain target temperature even under 

disturbances. The network topologies play important role in both economic (i.e., total annual cost (TAC)) and 

dynamic control aspects. To address this gap, this work introduces a hybrid approach. First, all combinatorically 

feasible heat recovery networks are generated using P-HENS. Thereafter, each network undergoes dynamic 

control performance evaluation through Aspen Plus simulations. The final step involves optimization of the 

network structures based on fuzzy method which avoids over-prioritization. To illustrate the efficacy of the 

proposed methodology, it is applied to solve a 5-stream problem. Results showed that Network A with the least 

TAC ($122,249) is not necessarily associated with the greatest dynamic performance (with failure rate of 15 %). 

Network C which offers the balance performance (with TAC of $122,666 and failure rate of 0 %) is chosen. 

1. Introduction 

Based on a recently published Global Carbon Budget report, carbon emissions attributed to fossil fuels hit a 

high peak in 2023, i.e., about 1.1 % greater than that in year 2022 (Abnett, 2023). This calls for pragmatic 

solutions to enhance the overall energy efficiency by maximizing the energy recovery. Process Integration (PI) 

tools are widely applied to reduce the overall energy consumption which further contributes to emissions 

reduction. This is achieved by forming a heat recovery network (HRN) that exchanges thermal energy between 

the hot and cold streams among various processes.  

Since the first systematic guide for HRN had been publicized by Linhoff and Flower (1985), its development has 

continuously progressed. The methodologies have progressively extended to address a broader scale of 

problems, including but not limited to multi-period operation (Oliveira et al., 2023), network retrofitting (Zahra et 

al., 2023), flexible network (Hafizan et al., 2019), and dynamic performance (Ghaderi et al., 2023). Nevertheless, 

most of the methodologies are designed to determine a single optimal solution which may not essentially be the 

most practical solution (Tan et al., 2024). Given the fact that the determined near-best (n-best) solutions can 

offer vital insights for decision-makers in making informed decisions (Voll et al., 2015), more attention has been 

placed towards exploring multi-solution heat exchanger network synthesis. For example, COMBINET method 

is used to discover multiple near-optimal networks (Mikkelsen and Qvale, 2001). Pavão et al. (2017), on the 

other hand, introduced a hybrid meta-heuristic approach that incorporates the use of Simulated Annealing and 

Particle Swarm Optimization to generate a list of feasible HRN for large-scale problems.  
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Recently, graph-theoretic based approach (i.e., P-HENS) has gained more interest as it can generate all 

combinatorically feasible networks that can meet the maximum energy recovery (MER) (Orosz and Friedler, 

2020). Its effectiveness has been demonstrated through a series of successful engineering (Teng et al., 2023) 

and pedagogical (How et al., 2023) applications. A recent comparative study (Burgos et al., 2023) has confirmed 

the strength of P-HENS in yielding n-best networks that meet the MER goal, as compared to other market-

available tools. Despite the positive outcomes, most works merely focus on elucidating its capability in 

generating all n-best networks but the systematic approach to further distinguish the generated networks is 

seldom discussed. Since the ability to ensure functionality of the network under disturbance is an important 

factor to ensure the system robustness (Kerlin and Upadhyaya, 2019), it is imperative to ensure the selected 

network is dynamically feasible. To achieve this, a hybrid approach that incorporates P-HENS and Aspen Plus 

Dynamics has been proposed to synthesize networks which are both economically and dynamically feasible. 

2. Problem Statement 

Given a set of hot stream i and a set of cold stream j where each hot stream is associated with a given heat 

capacity of 𝐶𝑃𝑖  and supply temperature of 𝑇𝑖
𝑆𝑢𝑝𝑝𝑙𝑦

; while each cold stream is associated with a given heat 

capacity of 𝐶𝑃𝑗  and supply temperature of 𝑇𝑗
𝑆𝑢𝑝𝑝𝑙𝑦

. Heat is exchanged through a series of process heat 

exchangers (connecting the hot and cold stream) and utility heat exchanger (i.e., heater and cooler) to meet the 

target temperature for both hot streams (𝑇𝑖
𝑇𝑎𝑟𝑔𝑒𝑡

) and cold streams (𝑇𝑗
𝑇𝑎𝑟𝑔𝑒𝑡

). A list of feasible HRNs k, which 

meet the minimum hot and cold utility (𝑄ℎ𝑜𝑡,𝑚𝑖𝑛 and 𝑄𝑐𝑜𝑙𝑑,𝑚𝑖𝑛) are then determined. The work aims to determine 

the optimal HRN with the consideration of the total annual cost (TAC) and the dynamic performance (i.e., the 

ability to withstand a given disturbance in both supply temperature and flowrate). 

3. Methodology 

A three-step sequential procedure (Figure 1) is developed to solve the proposed problem. The general 

descriptions of each step are stated in the sub-sections below: 

 

Figure 1: Proposed research methodology. 

3.1 Step 1: Synthesis of n-best heat recovery network (HRN) using P-HENS  

P-HENS is an extension of P-graph which are designed to generate combinatorically feasible solutions for HRN 

synthesis problems. Generally, the limiting data including stream (e.g., heat capacity, supply temperature, and 

target temperature for all involved hot stream i and cold stream j) and utility information (e.g., unit cost and 

supply temperature) are used as the input for the P-HENS software, where the feasible networks that able to 

meet the (i) temperature constraint (i.e., meeting the target temperature for both hot and cold stream while 

ensuring the minimum temperature difference between the two matching streams (∆𝑇𝑚𝑖𝑛) are maintained at a 

desired level) and (ii) pinch minimal energy constraint. At this stage, the identified network is ranked merely 

based on TAC which encompasses the utility costs and capital expenses. Eq(1) shows the TAC calculation of 

each determined network k (𝑇𝐴𝐶𝑘), where 𝐶ℎ𝑜𝑡 and 𝐶𝑐𝑜𝑙𝑑 refer to the unit cost of hot and cold utility; while 𝐶𝐻𝐸 

is the function of capital cost of heat exchangers which is a function of heat transfer area (𝐴). 

𝑇𝐴𝐶𝑘 = [𝑄ℎ𝑜𝑡,𝑚𝑖𝑛 × 𝐶ℎ𝑜𝑡 + 𝑄𝑐𝑜𝑙𝑑,𝑚𝑖𝑛 × 𝐶𝑐𝑜𝑙𝑑 +∑𝐶𝐻𝐸(𝐴)]
𝑘
 (1) 

3.2 Step 2: Dynamic performance evaluation using Aspen Plus Dynamics 

In this step, the ability of each selected network to handle disturbances is tested by simulating the network using 

Aspen Plus Dynamics. Generally, the process begins with simulating the established network in Aspen Plus. 

Within this environment, HeatX is used to model the heat exchanger unit while the Heater component models 

both the heater and cooler units in the HRN. For all HeatX units, the hot stream outlet temperature is chosen as 
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the design specification. Once the HRN is established in Aspen Plus, it is then converted into a dynamic 

simulation via flow-driven simulation. The dynamic performance evaluation was done by introducing positive 

and negative disturbances in terms of temperature (±5 °C) and flowrate (±10 %) on all streams involved. In this 

work, the dynamic performance is expressed using two indicators: (i) failure rate which reflects the robustness 

of the network (𝐹𝑅𝑘) in tackling each disturbance scenario (lower failure rate means greater robustness) and (ii) 

worst-case temperature deviation (∆𝑇𝑤𝑜𝑟𝑠𝑡) which indicates the greatest offsets of target temperature: 

𝐹𝑅𝑘 =
𝑁𝑘
𝐹𝑎𝑖𝑙

𝑁𝑇𝑜𝑡𝑎𝑙 
(2) 

∆𝑇𝑤𝑜𝑟𝑠𝑡 = max(|𝑇𝑖
𝑇𝑎𝑟𝑔𝑒𝑡

− 𝑇𝑖
𝐷𝑖𝑠_𝑇𝑎𝑟𝑔𝑒𝑡

|, |𝑇𝑗
𝑇𝑎𝑟𝑔𝑒𝑡

− 𝑇𝑗
𝐷𝑖𝑠_𝑇𝑎𝑟𝑔𝑒𝑡

|) (3) 

where 𝑁𝑘
𝐹𝑎𝑖𝑙 refers to the number of failures where the target temperature is unable to achieved by a given 

control system; 𝑁𝑇𝑜𝑡𝑎𝑙  refers to the total number of disturbance scenarios; while 𝑇𝑖
𝐷𝑖𝑠_𝑇𝑎𝑟𝑔𝑒𝑡

 and 𝑇𝑗
𝐷𝑖𝑠_𝑇𝑎𝑟𝑔𝑒𝑡

 

indicate the target temperature achieved for hot stream i and cold stream j when encountering disturbances. 

3.3 Step 3: Multi-objective optimization 

Finally, Fuzzy Optimization (FO) is opted as the strategy to rank the yielded HRNs with consideration of both 

TAC and dynamic performance. As the objective function of FO is to maximize the least satisfied objective (𝜆), 

it has a tendency to avoid over-prioritisation due to human bias (Tan et al., 2021).  

𝑚𝑎𝑥𝜆 ≤ [𝜆𝑎]𝑘 (4) 

[𝜆𝑎]𝑘 =
𝑃𝑎
𝑚𝑎𝑥−[𝑃𝑎]𝑘

𝑃𝑎
𝑚𝑎𝑥−𝑃𝑎

𝑚𝑖𝑛  (5) 

where 𝜆𝑎 refers to the degree of satisfaction of performance indicator a, which can be computed using the max-

min normalization method shown in Eq(5); [𝑃𝑎]𝑘 refers to the performance scale of indicator a for network k; 

while the corresponding upper and lower limits are denoted as 𝑃𝑎
𝑚𝑎𝑥 and 𝑃𝑎

𝑚𝑖𝑛. 

4. Case Study 

A 5-stream problem from Smith (2005) is modified and adopted as the case study in this work. The respective 

limiting data is shown in Table 1, while the other assumed parameters are summarized in Table 2.  

Table 1: Limiting data of the proposed case study 

Stream ID Supply Temperature (°C) Target Temperature (°C) Heat Capacity (MW/°C) 

H1 160 40 0.030 

H2 150 50 0.050 

H3 140 110 0.050 

C1 60 160 0.050 

C2 60 150 0.020 

Table 2: Other parameters used in P-HENS 

Item Value Reference Item Value Reference 

𝐶ℎ𝑜𝑡 ($/kWy) 37.64 P-HENS default value 𝐶𝐻𝐸(𝐴) ($/y) 145.63 × 𝐴0.6  P-HENS default value 

𝐶𝑐𝑜𝑙𝑑 ($/kWy) 18.12 P-HENS default value ∆Tmin (°C) 10 - 

 

The generated network is then modelled in Aspen Plus Dynamics for dynamic performance evaluation. It is 

important to note that this work, by no means, aims to determine the optimal control strategy for each network 

but rather serves as an essential guide to incorporate dynamic control performance in n-best HRNs evaluation. 

With that, the same control strategy (inspired by Luyben et al. (1999)) is applied to the synthesized n-best HRNs. 

Specifically, bypass is installed across the heat exchanger to enable degree-of-freedom for process control, 

especially when it is connected with stream that does not contain any utility heat exchanger. The bypass fraction 

is set arbitrarily at 0.1 for all simulated networks to ensure the comparison of networks are made under identical 

conditions. 
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5. Results and Discussions 

Figure 2 shows the 3 n-best HRN generated from P-HENS. Despite associating with different network 

topologies, all the networks can meet the pinch minimal energy constraint (i.e., 4.2 MW of 𝑄𝑐𝑜𝑙𝑑,𝑚𝑖𝑛 and 0.9 MW 

of 𝑄ℎ𝑜𝑡,𝑚𝑖𝑛). The corresponding TACs for both networks are tabulated in Table 3. 

 

Figure 2: HRN generated from P-HENS: (a) Network A, (b) Network B, and (c) Network C (Numerical values 

represents temperature (°C) unless specified otherwise). 

Table 3: Performance of each network generated from P-HENS and base case. 

Network ID 𝑇𝐴𝐶𝑘 ($/y) 𝐹𝑅𝑘 (%) ∆𝑇𝑤𝑜𝑟𝑠𝑡 (°C) 𝜆  

A 122,249 15 2.96 0.338 

B 122,913 35 4.47 0.000 

C 122,666 0 0 0.372 

Figure 3 illustrates the established control structures for all three networks, while Table 4 provides a summary 

of the dynamic performance evaluation. For Network A, it can restore the outlet temperature to its nominal value 

for 17 disturbance scenarios (out of 20), resulting in an 𝐹𝑅𝑘 of 15 %. Note that Network A fails to restore the 

outlet temperature when subjected to a +10 % feed flowrate on stream H3 and a +5 °C temperature increase 

on both stream H3 and C1. This outcome is expected because streams H3 and C1 feed into the same heat 

exchanger, whose outlet serves as the main control variable. As this outlet does not have a utility heat 

exchanger, any disturbance introduced upstream can significantly impact the outlet temperature, thereby 

influencing the dynamic performance of Network A. Among the 3 disturbances that prevent the outlet 

temperature from returning to its nominal value, the +5 °C on H3 exhibits the most significant ∆𝑇𝑤𝑜𝑟𝑠𝑡 (i.e., 2.96 

°C). For Network B, the 𝐹𝑅𝑘  is relatively high at 35 %, as the control structure can only restore the outlet 

temperature to its nominal value for 13 disturbance scenarios. There are 3 other disturbances that can bring the 

outlet temperature close to its nominal value (within 1°C), while the remaining 4 lead to a complete failure to 

restore the outlet temperature. Similar to Network A, disturbances that cause the outlet temperature to deviate 

from its nominal value are associated with the same heat exchanger, where the outlet serves as the main control 

variable. These disturbances include a −10 % feed flowrate on stream H1, a +10 % feed flowrate on stream C2, 

and a ±5 °C temperature change on H1. As previously discussed, the absence of a utility heat exchanger at this 

outlet appears to be the main factors that causes significantly impact of any upstream disturbance on the outlet 

temperature. Among the four disturbances that prevent the outlet temperature from returning to its nominal 

value, the +5 °C increase on H1 results in the most significant ∆𝑇𝑤𝑜𝑟𝑠𝑡 of 4.47 °C. Regarding Network C, the 

𝐹𝑅𝑘 stands out as the most favorable at 0 %. Consequently, all outlet temperatures can revert to their respective 

nominal values irrespective of the type of disturbances introduced. Consequently, in this network, there is no 

∆𝑇𝑤𝑜𝑟𝑠𝑡, highlighting its robust performance in maintaining outlet temperature under varying conditions. This 

outcome is somehow expected due to all 5 streams in Network C feature a hot/cold utility heat exchanger at the 

outlet stream, which facilitate the restoration of outlet temperatures back to its nominal values, albeit to different 

amount of heating/cooling utility consumption. 

In summary, the comparison of dynamic performance between all 3 networks indicates that Network C exhibits 

superior performance, as evidenced by the lowest 𝐹𝑅𝑘 and ∆𝑇𝑤𝑜𝑟𝑠𝑡. This was attributed to the presence of the 

hot/cold utility heat exchanger in all the 5 streams as explained previously. Following closely is Network A, with 
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a 𝐹𝑅𝑘 of 15 % and a ∆𝑇𝑤𝑜𝑟𝑠𝑡 of 2.96 °C. One possible explanation for this could be attributed to its slightly less 

complex structure in comparison to Network B. From Figure 3(a), it is apparent that H3 serves as the main 

control variable, given the absence of process utility on that stream. In H3, there is only one heat exchanger 

along the stream. Consequently, the inlet of H3 passes through only heat exchanger #6, and the outlet 

temperature from this heat exchanger #6 serves as the main control variable. Although disturbances introduced 

to H3 may impact the output temperature, they are less likely to significantly affect other streams. Conversely, 

in Network B, the main control variable is situated on stream C2, which has two heat exchangers (#2 and #3) 

along the stream. Notably, these heat exchangers are closely linked to heat exchanger #1, leading to a more 

complex control structure and a potential “chain-effect” relationship between C2 and H1. Any disturbance in H1 

could adversely affect C2, as H1 first exchanges heat with C2 via heat exchanger #2 and then undergoes 

another heat exchange with C2 via heat exchanger #3. This complexity complicates the entire network and likely 

contributes to the relatively poorer dynamic performance observed, characterized by the high 𝐹𝑅𝑘 . 

Consequently, achieving better and more robust control for Network B may be necessary to improve dynamic 

performance. 

 

Figure 3: Control structures for (a) Network A, (b) Network B, and (c) Network C. 

Based on FO, Network C with the highest 𝜆 is deemed as the optimal solutions. Despite its lower TAC as 

compared to Network A, the greatest satisfaction of Network C in both 𝐹𝑅𝑘 and ∆𝑇𝑤𝑜𝑟𝑠𝑡, causing it to become 

the most compromised solution. The case study has revealed that a network with the lowest TAC is not 

necessarily associated with the best dynamic control performances. In other words, this justifies the rationale of 

incorporating the proposed FO in the future applications. 

6. Conclusions 

Overall, this study presents a comprehensive framework for evaluating HRNs, emphasizing both cost-efficiency 

and operational robustness. Utilizing a 5-stream problem as a case study, 3 n-best HRNs were generated 

through P-HENS and subsequently simulated in Aspen Plus Dynamics for dynamic performance evaluation. 

Each network underwent testing with identical control strategies and disturbances, including temperature (±5 

°C) and flowrate fluctuations (±10 %) across all streams. The dynamic performance indicators include the 𝐹𝑅𝑘 

and ∆𝑇𝑤𝑜𝑟𝑠𝑡, under various disturbance scenarios, while FO was employed to rank HRNs based on both TAC 

and dynamic performance. Network C demonstrated the best dynamic performance, restoring all the outlet 

temperature back to its nominal value under all 20 disturbance scenarios. This is followed by Network A, which 

demonstrate the capability to restore the outlet temperatures to nominal values in 17 out of 20 disturbance 

scenarios, with a 𝐹𝑅𝑘 of 15 % and a ∆𝑇𝑤𝑜𝑟𝑠𝑡 of 2.96 °C. Conversely, Network B exhibited the highest 𝐹𝑅𝑘 of 35 

%, achieving nominal outlet temperatures in only 13 scenarios, with a ∆𝑇𝑤𝑜𝑟𝑠𝑡 of 4.47 °C. It can be seen when 

the outlet temperature of Networks A and B fails to revert to its nominal value, it typically occurs under scenarios 
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where disturbances are introduced into a specific stream whose outlet functions as the primary control variable. 

Due to the absence of a utility heat exchanger at the outlet, disturbances introduced upstream can markedly 

affect the outlet temperature, consequently impacting the dynamic performance of both networks. According to 

FO, Network C with the highest 𝜆 is deemed as the optimal solution. Despite its lower TAC compared to Network 

A, the greater satisfaction of Network C in both 𝐹𝑅𝑘 and ∆𝑇𝑤𝑜𝑟𝑠𝑡 causes it to become the most compromised 

solution. The current methodology measures the network’s capability to address one disturbance at a time and 

its applicability is restricted to single-period operation problems. Future extensions can focus on extending the 

framework to cover (i) dynamic performance under multi-disturbance consideration and (ii) multiperiod control. 
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