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For years, biochar has gained increasing interest in the scientific community due to its significant potential to 

sequester carbon from the atmosphere and improve the physicochemical properties of soil which in turn 

increases crop yield. Multiple investigations on crop productivity using biochar-induced soil were done before 

but gave variable results. Different biochar properties, production methods, and application conditions have led 

to varied responses when applied to different soils, ranging from positive to neutral or even negative crop yield 

effects, necessitating the need to identify the most suitable combination of parameters to achieve the most 

favorable outcome. This study developed a model to maximize the beneficial effects of biochar in agricultural 

settings with the aid of rough set-based machine learning (RSML). Four if-then rules were accepted correlating 

the feedstock type, application rate, pyrolysis temperature, and soil type to the % change in crop yield. The 

coverage of Rules 1, 2, 3, and 4 in the training set are 19 %, 14 %, 11 %, and 6 % with an accuracy of 100 %. 

They also cover 13 %, 21 %, 14 %, and 4 % of the validation set at 100 % accuracy. The findings indicate that 

these condition attributes can have a notable impact on crop yield in biochar-induced soil. This study can also 

guide the agricultural sector in choosing the appropriate biochar parameters to improve soil quality and 

maximize crop productivity.  

1. Introduction 

In the pursuit of sustainable agriculture amidst escalating environmental concerns, integration of innovative 

agricultural practices is imperative. One promising and sustainable approach is the application of biochar to soil 

(Woolf et al., 2010). For years, there has been an increasing interest in investigating the potential of biochar in 

soil amendment and as a climate change mitigation tool. Biochar, a solid porous byproduct obtained from 

pyrolysis, the heating of biomass feedstock under a condition with limited or no oxygen (Brassard et al., 2019), 

has been widely known as a good addition to agricultural activity because of its auspicious effect on soil 

properties which in turn enhances crop yield (Novak et al., 2009). The production of biochar can also displace 

the use of fossil fuels by energy co-products (syngas and bio-oil). Most of the carbon in biochar is recalcitrant. 

Hence, the production of biochar from biomass feedstock via pyrolysis and inducing it to soil has great prospects 

for long-term withdrawal of CO2 from the atmosphere as it is expected to sequester carbon for centuries 

(Brassard et al., 2016). This increase in soil carbon sequestration contributes to the improvement of soil quality 

due to the vital role of carbon in chemical, physical, and biological soil processes (Novak et al., 2009).  
Increased crop productivity is one prominent effect of biochar application to soil (Singh et al., 2022). Multiple 

investigations on crop productivity using biochar-induced soil have shown variable results due to the variation 

in biochar properties, soil conditions, and experimental conditions (Dai et al., 2020). The effect of the different 

combinations of the said parameters remains unclear. Such variations can be elucidated to find the optimum 

set of parameters and attain the most favorable outcome. The following process parameters highly influence 

the physicochemical properties of the biochar product: the type of biomass feedstock and the operating 

conditions during pyrolysis (Novak et al., 2009). Novak et al. (2009) theorized that the production process of 
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biochar could be engineered to generate designer biochars which consist of distinct physical and chemical 

characteristics suitable for the soil conditions where the biochar would be applied. 
Data from previous studies focusing on the effects of biochar application on crop yield can be used to find trends, 

patterns, and correlations between the different parameters involved by using artificial intelligence. Artificial 

Intelligence (AI) is the ability of a computer derived from human intelligence, to develop advanced systems in 

order to keep up with the diversity and complexity of the data involved (Joiner, 2018). Machine Learning (ML) 

makes it possible to conduct large-scale observations, improve, and extend itself through the application of new 

knowledge (Woolf, 2009) as it uses computers to learn general concepts from the training sets, a subset used 

to generate rules (Hvidsten, 2013). ML is proven to be effective and more convenient especially with large data 

gathered ready for treatment. ML has been used in maximizing the capability of biochar by predicting its total 

yield and specific area (Hai et al., 2023) and in evaluating the removal of heavy metals by biochar (Liu et al., 

2023) and from industrial wastewater (Dashti et al., 2023). Its application is not limited to this field, for it is widely 

used in numerous industries such as medicine, agriculture, food engineering, etc. 
Huge data sets are often indiscernible and difficult to characterize precisely. A mathematical approach to 

decision-making that can deal with such problems is the rough set theory (RST). RST is a useful tool for decision 

support systems that deal with vagueness, uncertainty, and imprecision of data involved in the decision process 

(Pawlak, 1997). This study pioneers the use of a rough set approach with the aid of machine learning to develop 

a rule-based model to forecast the influence of several factors on crop yield after subjecting the soil to biochar 

application. If-then rules were generated and interpreted in this study, which can be readily applied in practical 

situations. The findings of this study can guide the agriculture sector in choosing the appropriate biochar 

parameters to improve soil quality, maximize crop productivity, and optimize the soil’s climate change mitigation 

potential. 

2. Methodology 

In developing the rule-based model, six steps were followed (Belmonte et al., 2023), as shown in Figure 1. The 

dataset used is the supplementary data on the influence of biochar applications on soil’s physicochemical 

properties, ranging from 2012 to 2021, obtained from the meta-analysis study of Singh et al. (2022). The meta-

analysis accepted a total of 59 studies that provided comparisons between the control (no biochar) and 

amendments (treated w/ biochar) groups. The effects of various condition attributes such as feedstock type, 

application rate (t/ha), pyrolysis temperature (°C), and soil type on % change in crop yield (decision attribute) 

were evaluated.  

 

Figure 1. Flow diagram of the research methodology 

A rough set-based machine learning (RSML), which uses Pawlak's rough set theory and Boolean reasoning for 

inducing the rules are the framework implemented in this study (Hvidsten, 2013). The raw data collected were 

pre-processed and discretized using the ROSETTA software. The discretized data include feedstock type, 

application rate (t/ha), pyrolysis temperature (°C), soil type, and % change in crop yield, and were represented 

with corresponding number-coded values, as shown in Table 1. From the data obtained, biochar-induced soils 

have varied responses, ranging from positive (177.586 %) to neutral (0.000 %) or even negative (27.607 %) 

crop yield effects. 

Rule induction was done using Johnson’s algorithm, a fast algorithm that uses a greedy search to find one 

reduct and produces rules in the ROSETTA software (Hvidsten, 2013). From the supplementary data, a total of 

122 objects were acquired, and these were randomly divided into two subsets: 85 objects (70 %) were used for 

the training set, a subset for generating the rule-based models by learning the patterns present in the data; and 

37 objects (30 %) were used for the validation set, a subset for validating the performance of the trained rule-

based models. The training sets are then reduced to minimal sets of condition attributes called reducts that are 

sufficient for describing the decision attribute (Gue et al., 2021).  
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After the generation of the rule-based models, four if-then rules that exhibited high performance based on the 

percentage coverage were accepted and validated using the validation set. The coverage factor, 𝑐𝑜𝑣𝑆(Φ, Ψ), 

represented by Eq(1), is a measure of how well the decision attribute (Ψ) covers all the necessary condition 

attributes (Φ). A high coverage factor means that all or most of the condition attributes were considered, while 

a very low coverage factor means that there are still parameter/s not being considered in the study (Pawlak, 

2002). On the other hand, the certainty factor, 𝑐𝑒𝑟𝑆(Φ, Ψ), also known as accuracy factor, represented by Eq(2), 

is a measure of how strongly the combination of condition attributes (Φ) suits and supports the decision attribute 

(Ψ). A high certainty factor means that there is a strong relationship between the condition attributes and the 

decision attribute, while a very low certainty factor means a little to no relationship at all (Pawlak, 2002). That is 

why in the ROSETTA System, the value for the % Accuracy for each generated rule is always 100 % unless the 

then-part contains several decisions (Hvidsten, 2013). 

  𝑐𝑜𝑣𝑆(Φ, Ψ) =
𝑐𝑎𝑟𝑑(∥ Φ ∧ Ψ ∥𝑆)

𝑐𝑎𝑟𝑑(∥ Ψ ∥𝑆)
 (1) 

  𝑐𝑒𝑟𝑆(Φ, Ψ) =
𝑐𝑎𝑟𝑑(∥ Φ ∧ Ψ ∥𝑆)

𝑐𝑎𝑟𝑑(∥ Φ ∥𝑆)
 (2) 

The mechanistic plausibility of the accepted four top-performing if-then rules was further assessed and proven 

using various supporting biochar literature. Lastly, a 10-fold cross-validation was done to prevent overfitting. 

Overfitting occurs when the rule-based model performs well on the training dataset but poorly on new or unseen 

dataset (Hvidsten, 2013). 

Table 1: Discretization of the attributes 

Feedstock Type Application Rate (t/ha) 

1 herbaceous 1 [1, 3) 

2 lignocellulosic 2 [3, 13) 

3 wood 3 [13, 60) 
    

Soil Type Pyrolysis Temperature (°C) 

1 {loamy, sandy loam} 1 [200, 325) 

2 {loamy silt clay} 2 [325, 463) 

3 {loam, sandy, silt loam} 3 [463, 800) 

4 {loamy sand, silty clay}   

5 {sandy clay loam, silty clay loam, sandy loam} % Change in Crop Yield 

  1 [-27.607, 11.642) 
 

 2 [11.642, 177.586) 

3. Results and Discussion 

This section discusses how the rules were generated and evaluated to determine the percentage change in 

crop yield after subjecting the soil to biochar application. Pertinent studies in the biochar literature that 

corroborate the validity of the accepted rules are further explained.  

Table 2 is a confusion matrix, which is one of the common metrics for evaluating the model performance. It 

comprises columns with the predicted percentage change in crop yield values generated by the rule-based 

model, and rows with the actual values. In total, the model accurately classified 75.29 % of the training dataset. 

Notably, among the 122 objects in the dataset, 85 were utilized as the training set, with 64 of them being correctly 

classified as highlighted in green, which are the reducts that are sufficient for describing the two discretized 

ranges of the decision attribute (Hvidsten, 2013). This means that 44 objects in the dataset indicate the number 

of correct predictions for the % change in crop yield ranging from -27.607 % to 11.642 %, while the 20 objects 

are for the % change in crop yield range of 11.642 % to 177.586 %. 

Table 2: Overall performance of the rules generated from the training set 

Predicted  

Actual 

 1 2 

1 44 4 Overall Accuracy 

2 17 20 75.29 % 
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The rules with the highest performance in terms of both percentage coverage and percentage accuracy from 

the training set (refer to Table 4) were accepted and given in Table 3. Rule 1 specifies that if the application rate 

ranges from 3 to 13 t/ha, the pyrolysis temperature is 463 °C – 800 °C, and the soil type is sandy clay loam, silty 

clay loam, or sandy loam, then the % change in crop yield ranges from -27.607 % to 11.642 %. Comparably, 

Rule 4 states that if the application rate is 13 t/ha – 60 t/ha, the pyrolysis temperature is 463 °C – 800 °C, and 

the soil type is loamy sand or silty clay, then the % change in crop yield ranges from -27.607 % to 11.642 %. 

While it is acceptable that all these attributes (application rate, pyrolysis temperature, and soil type) can affect 

crop productivity, it can be deduced from these rules that the pyrolysis temperature is the most influential factor 

that can affect crop productivity among the condition attributes in these rules. This further implies that the biochar 

produced at a pyrolytic temperature equal to or greater than 463 °C will result in a % change in crop yield that 

is less than or equal to 11.642 %. The study by Adekiya et al. (2019) showed that wood-based biochars 

produced at a pyrolysis temperature of 580 °C with an application rate of 25 t/ha resulted in 0 %, 4 %, and 4.55 

% changes in crop yield from differing crop yield controls. The paper of Tammeorg et al. (2014) revealed that 

wood-based biochars produced at a pyrolysis temperature of 600 °C with an application rate varying from 5, 10, 

20, and 30 t/ha resulted in negative % changes in crop yield ranging from -2.96 % to -20 %. The temperature 

during pyrolysis has a significant influence on the physicochemical properties of the biochar (Ding et al., 2014), 

which in turn affects plant growth when applied to soil. A linear increase in biochar pH was observed with 

increasing pyrolytic temperature (Li et al., 2019). Application of biochar to soil can further increase soil pH. Soil 

pH is determined as one of the key factors influencing plant growth (Dai et al., 2017) since the availability of 

nutrients for plants is pH-dependent (Purakayastha et al., 2019). The study of Jeffery et al. (2011) revealed that 

the increase in soil pH was found to be positively correlated to the increased amount of plant productivity.  

However, it is also important to note that optimal pH levels should be maintained as soils with high pH can hinder 

plant growth due to toxic concentrations of mineral elements and/or low nutrient availability (Läuchli, 2012). 

Purakayastha et al. (2019) denoted that biochars produced at a lower pyrolysis temperature could offer greater 

soil nutrient availabilities than that prepared at a higher pyrolysis temperature. In the training set, the coverage 

achieved for Rule 1 and Rule 4 are 19 % and 6 % with 100 % accuracy.  

Table 3: Accepted rules for the crop yield response of biochar-induced soil 

Top Performing Rules 

Rule 1 IF Application Rate (t/ha) = 2 AND Pyrolysis Temperature (°C) = 3 AND Soil Type = 5 THEN 

% Change in Crop Yield = 1 

Rule 2 IF Feedstock Type = 1 AND Pyrolysis Temperature (°C) = 2 THEN % Change in Crop Yield 

= 2 

Rule 3 IF Feedstock Type = 1 AND Application Rate (t/ha) = 3 THEN % Change in Crop Yield = 2 

Rule 4 IF Application Rate (t/ha) = 3 AND Pyrolysis Temperature (°C) = 3 AND Soil Type = 4 THEN 

% Change in Crop Yield = 1 

Rule 2 states that if the feedstock is herbaceous, and the pyrolysis temperature is within the range of 325 °C to 

463 °C, then the % change in crop yield is 11.642 % - 177.586 %. Similarly, Rule 3 specifies that if the biochar 

feedstock is herbaceous, and the application rate is 13 t/ha – 60 t/ha, then the % change in crop yield is 11.642 

% - 177.586 %. These results imply that herbaceous-based biochar has positive response and can significantly 

increase crop yield when applied to soil. From the meta-analysis of Singh et al. (2022), among the other 

feedstock types, herbaceous-based biochar had resulted to greatest significant increase in crop yield. It was 

followed by the lignocellulosic-based and wood-based biochars. Herbaceous-based biochar has greater 

amounts of nutrients compared to biochar produced from other feedstocks (Singh et al, 2022). Specifically 

compared to wood-derived biochar, Latini et al. (2019) reported that biochar made from wheat straw, which is 

herbaceous, has higher ash %, cation exchange capacity (CEC), contents of N, P, Ca, and Mg, pH, and wt. % 

of C, Na, and K, which are nutrients necessary to facilitate crop growth (Tandzi and Mutengwa, 2020). The 

impact of biochar properties on crop yields appeared to be most prominently influenced by the temperature 

during the pyrolysis process (Ye et. al., 2019). Biochars produced at pyrolytic temperature less than or equal to 

400 °C resulted to largest increase in crop yield (Ye et. al., 2019). It is also important to note that these biochars 

were mostly produced from cereal residues, a type of herbaceous feedstock. On the other hand, biochars 

produced at temperatures greater than 500 °C induced a smaller effect on crop yield. This is consistent with the 

findings of Li et al. (2019) and Han et al. (2023), wherein the pyrolysis temperature range of 400 – 500 °C proved 

to be the most beneficial in enhancing crop yields, while biochars produced at elevated temperatures, 

particularly exceeding 600 °C, resulted in a decline in crop productivity. Biochars prepared at high pyrolytic 

temperatures is capable of tightly holding water and dissolved minerals. Restricting the accessibility of essential 

water and minerals that the crop needs for their development (Li et al., 2019). It was found that the effects of 
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pyrolysis temperature on crop yield were similar to the effects on N retention, which may be hypothesized that 

crop growth is closely connected to the availability of N in soil (Li et al., 2019) which is a nutrient that can be 

found in greater amounts in herbaceous biochars compared to biochars produced from other feedstocks. In the 

training set, the coverage achieved for Rule 2 and Rule 3 are 14 % and 11 % with 100 % accuracy.  

The accepted if-then rules for the crop yield response of biochar-induced soil underwent validation to evaluate 

their performance. Shown in Table 4 are the percentage coverage and percentage accuracy of the rules in the 

validation dataset where all rules performed well as reflected on their coverages. Rule 2 has the highest 

coverage of 21 %, followed by Rule 3 with 14 %, Rule 1 with 13 %, and Rule 4 with 4 %.  

To prevent overfitting and gain further insight into the performance of the rules, 10-fold cross-validation was also 

done. The dataset underwent 10 random divisions into the training set and validation set, each with 90 % of 122 

data points utilized as the training set and 10 % allocated to the cross-validation set.  

The repeatedly occurring top-performing rules identified through cross-validation are tabulated in Table 4, 

indicating their frequency of appearance, the highest percentage coverage, and the highest percentage 

accuracy. Rule 1 was present in 8 trials, Rules 2 and 4 in 9 trials, and Rule 3 in 10 trials. This implies that the 

four top-performing rules were evaluated multiple times, showing good performance not only on the training set 

(70-30 split), but also on the new trained dataset (90-10 split). Lastly, this result indicates that the performance 

of the four top-performing rules is satisfactory during the first validation through cross-validation. This is an 

implication that the methodology implemented using the software ROSETTA yields acceptable outcomes. 

Table 4: Performance of the top-performing rules 

Rules 

Training Dataset Validation Dataset 10-Fold Cross Validation 

%  

Coverage 

%  

Accuracy 

%  

Coverage 

%  

Accuracy 

Frequency of 

Occurrences 

Highest % 

Coverage 

Highest % 

Accuracy 

1 19 100 13 100 8 42 100 

2 14 100 21 100 9 100 100 

3 11 100 14 100 10 33 100 

4 6 100 4 100 9 25 100 

4. Conclusion 

Rough-set theory was employed with the aid of machine learning to develop a model to forecast the influence 

of different factors on % change in crop yield after subjecting the soil to biochar application. The model consists 

of if-then rules correlating the feedstock type, application rate, pyrolysis temperature, and soil type to the % 

change in crop yield. The performance of the rules was further evaluated for mechanistic plausibility. The 

findings indicate that these condition attributes can have a notable impact on crop yield in biochar-induced soil. 

A 10-fold cross-validation was done to ensure that the generated rule-based model performed well not only in 

the training set but also in the new trained dataset of the cross-validation. The results exhibit good performance 

from the first validation until the cross-validation. Hence, the findings of this study can guide the agricultural 

sector in choosing the appropriate biochar parameters to improve soil quality, maximize crop productivity, and 

optimize the soil’s climate change mitigation potential. The rule-based model developed in this study can guide 

the production and application of biochar suitable for improving soil properties, which translates to increased 

crop productivity. Further research can consider additional parameters not included in this study and utilize 

larger datasets from other meta-analyses to enhance the prediction accuracy of the rough set-based model 

while adapting the same methodology. These parameters might include the type of crop to be planted, the 

location of biochar application, and the initial conditions of the soil's physicochemical properties. 
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