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Municipal solid waste (MSW) management poses a significant challenge amidst global population growth and 

urbanization. With Beijing as a focal point due to its substantial contribution to MSW generation and greenhouse 

gas (GHG) emissions, this study employs two-stage Bayesian-optimized Artificial Neural Network models to 

forecast MSW removal volume and evaluate associated GHG emissions in Beijing. The analysis integrates 

socioeconomic indicators, including population and GDP, to elucidate the complex relationship between MSW 

generation and economic development. Various MSW treatment scenarios are assessed by alternating the 

configuration of sanitary landfills, incineration, and composting. Results indicate a projected MSW removal 

volume of approximately 14 Mt by 2060, a 63.16 % reduction compared to 2023. Scenario 2 (50 % incineration 

and 50 % composting) demonstrates the potential to reduce GHG emissions by approximately 4.11 Mt of CO2e 

compared to the current practice. The findings underscore the need for comprehensive waste management 

strategies integrating waste segregation, incineration, and composting to achieve sustainable MSW treatment. 

1. Introduction 

Municipal solid waste (MSW) is emerging as a significant environmental issue due to global population 

expansion, economic development, and urbanization trends. Around 2.01 Gt of MSW are produced annually 

worldwide, and it is expected to surge to 3.40 Gt by 2050 (Kaza et al., 2018). As MSW treatment accounts for 

5 % of the total GHG emissions into the atmosphere (Gautam and Agrawal, 2021), its rapid growth will 

exacerbate the already alarming rate of global warming and climate change. East Asia and the Pacific generate 

the most MSW (23 %), followed by Europe and Central Asia (20 %), with China being a prominent contributor 

of 15.5 % of the global MSW generation (Tiseo, 2023). 

Considering China’s major role in GHG emissions and its “30·60 dual-carbon” goal to reach peak carbon 

emissions by 2030 and achieve carbon neutrality by 2060, an endeavor towards carbon-neutral MSW 

management is crucial. Various studies have focused on China’s MSW review, forecast, and technological 

developments. Li et al. (2024) concluded that China has shifted from landfill to incineration and power generation 

as their predominant MSW treatment method, reaching 72.55 % in 2021. Zhang et al. (2022) noted a surge in 

China’s MSW-related GHG emissions from 43 Mt in 2010 to 80 Mt in 2019. They also predicted China’s carbon 

neutrality of MSW treatment only after China implemented a full garbage sorting policy under Shared 

Socioeconomic Pathway 1. In terms of waste-to-energy conversion, Awasthi et al. (2022) recommended a 

combination of unconventional technology, such as pyrolysis and gasification, as well as conventional 

technology, like incineration and sanitary landfill, to realize a resource recovery loop in MSW management. 

To date, no study has evaluated GHG emissions of MSW by employing forecasted MSW removal volume 

derived from socioeconomic indicators in Beijing. The MSW production rate is correlated with economic 
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development level, average family size, monthly income, and employment status. Similarly, albeit not proposing 

a quantitative model to show their correlation, Mian et al. (2017) showed that urban population and economic 

growth are important factors affecting MSW generation. As a highly populated urbanized city, Beijing is chosen 

as the region for the study. Being the capital of China, Beijing tops the nominal GDP per capita and is the second 

most populated city in the country. Since China has grown to be the fastest developing economy worldwide, 

Beijing underpins remarkable values as a reference to other Chinese regions within the context of urbanization 

and MSW treatment policy. 

This study aims to evaluate GHG emissions associated with MSW by employing forecasted MSW removal 

volume derived from socioeconomic indicators using a Bayesian-optimized Artificial Neural Network (ANN). The 

forecasting model projects MSW removal volume and subsequently examines GHG emissions, while past 

studies directly forecasted the latter only. Considering China’s rapid economic and social development, this 

study can comprehensively understand the drivers behind MSW volume and the pertinent GHG emissions. 

Ultimately, this study can promote the development of a more robust and efficient MSW treatment system by 

presenting a precipient understanding of future MSW trends to the stakeholders in China to advocate 

environmental conservation. 

2. Methodology 

2.1 Phase 1: AI predictive modelling for the volume of MSW removal 

With a 2019 MSW removal rate of 20,300 tpd (Beijing Municipal Ecology and Environment Bureau, 2023), 

Beijing’s MSW primarily comprises food residue (Figure 1). In 2019, 24 % of MSW was disposed of in sanitary 

landfills, 50 % of MSW was treated in incineration, and 26% of MSW was treated in composting (Li et al., 2022). 

The MSW treatment has mainly developed in the direction of incineration, and the sanitary landfill rate of MSW 

generally declined from 2006 to 2019 in Beijing. Understanding the socioeconomic indicators becomes crucial 

in elucidating these trends, as studies affirm the strong association between population, GDP, and MSW 

removal (Hoy et al., 2022). 

 

Figure 1: The proportion of MSW composition in Beijing in 2019 (Li et al., 2022). 

A two-stage artificial neural network (ANN) model is used to forecast municipal solid waste (MSW) removal 

volumes from 2022 to 2060, developed using MATLAB R2021. Optimized with Bayesian methods, the first ANN 

model predicts MSW removal volume based on historical data collected from the Beijing Municipal Bureau of 

Statistics (1992-2022) database. Bayesian optimization, which uses the Bayesian conditional probability rules, 

iteratively estimates the best hyperparameter combination to minimize error, reducing the need for manual 

feature engineering and computational resources (Hoy et al., 2024). Historical socioeconomic data (population 

and GDP) and MSW removal volumes are normalized and partitioned into training and testing sets (80:20 ratio), 

as recommended by Hoy et al. (2022). The Bayesian-optimized ANN model is used to train on data from 1991 

to 2021 and learn the relationship between socioeconomic patterns and MSW removal volume. Bayesian 

optimization optimizes two critical hyperparameters: the number of hidden layer neurons and the learning rate, 

aiming to minimize the root mean square error (RMSE), as presented in Eq(1). 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖 − 𝑋𝑖)2 𝑁⁄𝑁
𝑖=0   (1) 

where RMSE is the root mean square error; Yi is the predicted value; Xi is the actual value; N is the number of 

data samples. 

The model undergoes 30 iterations, with training halting after 1,000 epochs or upon no further improvements. 

After the 30 iterations, the optimized hyperparameter combination is automatically identified based on the 

combination that yields predictions with the smallest RMSE. The optimal hyperparameters are identified by the 

lowest RMSE, with recommended ranges for the learning rate (1×10-1 to 1×10-5) (Goodfellow et al., 2016) and 
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the number of neurons (1 to 12), which is calculated based on a formula involving the number of inputs, outputs, 

and a constant, as presented in Eq(2) (Zhang et al., 2021).  

𝑙 = √𝑛 + 𝑚 + 𝑎  (2) 

where l is the number of neurons; n is the number of inputs (i.e., two inputs – population and GDP); m is the 

number of outputs (i.e., one output – annual MSW emissions); a is a constant between [0, 10]. 

The second ANN level forecasts Beijing’s population and GDP from 2023 to 2060. This model is trained using 

historical and government-projected population and GDP data of China, sourced from the National Bureau of 

Statistics of China (1992-2022) database. The trained model then uses Beijing’s historical data to project its 

population and GDP from 2023 to 2060. These projected data and data from 2022 are input into the trained 

Bayesian-optimized ANN model (i.e., the first model) to predict Beijing’s MSW removal volume for 2022 to 2060. 

An ensemble learning approach with 10 trials reduces forecast bias, and the forecasted MSW removal volumes 

are analyzed based on the ensemble mean. 

2.2 Phase 2: GHG emissions evaluation for various MSW treatment scenarios 

In Phase 2, the study quantifies the greenhouse gas (GHG) emissions from MSW treatment facilities, focusing 

on sanitary landfills, incineration, and composting. Methane emissions are quantified for sanitary landfills using 

the waste model from the 2006 IPCC guidelines (2019 Refinement) (IPCC, 2019). Landfill gases are collected 

and recovered at a 75 % efficiency rate for electricity generation (Cudjoe et al., 2021). The avoided emissions 

from this electricity, which displaces fossil-based grid electricity, are calculated using Equations (3) and (4). The 

net GHG emissions, denoted as 𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙), are determined by subtracting the avoided emissions from 

the fugitive landfill gas emissions, as shown in Eq(5). 

𝐸𝐺𝑒𝑛 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙) =
𝑅𝐶𝐻4×37.2×𝛼×0.9×𝛽

𝛾
  

𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙) = 𝐸𝐺𝑒𝑛 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙) × 0.1229 × 2.64 × 10−3  

𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙) = (𝐶𝐻4 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 − 𝑅𝐶𝐻4
) × 25 − 𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙)  

(3) 

(4) 

(5) 

where 𝐸𝐺𝑒𝑛 (𝐿𝑎𝑛𝑑𝑓𝑖𝑙𝑙)  represents the electricity generated from landfill methane; 37.2 MJ/m3 is the methane 

heating value; 0.9 is the landfill oxidation factor; 𝛽 is the electricity generation efficiency (i.e., 35 %); 𝛼 is the 

capacity factor (i.e., 85 %), and 𝛾 is the conversion factor from MJ to kWh (i.e., 3.6) (Cudjoe et al., 2021). The 

conversion factor for translating electricity generation to its equivalent in standard coal is 0.1229 kg of standard 

coal per kWh (NBS, 2022), with standard coal producing 2.64 t of CO2e per t of coal (NDRC, 2016). 

For incineration, flue gases emitted to the atmosphere during the treatment of MSW contribute to GHG 

emissions, while the heat energy produced is converted into electricity, which substitutes fossil-based electricity. 

Every tonne of MSW is estimated to produce 441 kWh of electricity (Beijing Municipal Commission of Urban 

Management, 2024). Only 75.8 % of electricity generated can be transmitted into the power grid (Gao, 2016). 

The formula for calculating net GHG emissions, denoted as 𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛), is provided in Eq(7). 

𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 𝑀𝑆𝑊𝐼 × 𝐸𝐺𝑒𝑛 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) × 75.8% × 0.1229 × 2.64 × 10−3  

𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 𝑀𝑆𝑊𝐼 × ∑ (𝑃𝐶𝑖 × 𝐶𝐶𝑖 × 𝑀𝐶𝑖)𝑖 × 𝐸𝐹 ×
44

12
− 𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)  

(6) 

(7) 

where 𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) represents the reduced GHG emissions from the electricity generated during the 

incineration process; 𝑀𝑆𝑊𝐼  represents the amount of incinerated MSW in tonnes; 𝐸𝐺𝑒𝑛 (𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)  is the 

electricity generated from incineration; PC represents the physical composition of waste type ith; CC represents 

the carbon content in ith waste; MC represents the proportion of mineral carbon in the total carbon content of ith 

waste; EF represents the combustion efficiency of the incinerator.  

In terms of composting, the biogas generated (i.e., methane and nitrous oxide) is calculated using the equation 

from the 2006 IPCC guidelines (2019 Refinement) (IPCC, 2019). All the biogas escapes to the atmosphere, 

while the products produced are used as biofertilizers, substituting chemical fertilizers and avoiding the GHG 

emissions associated with their production. According to Alengebawy et al. (2022), 1 t of biocompost can avoid 

0.183 t CO₂e from chemical fertilizer. The net GHG emissions, denoted as 𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐶𝑜𝑚𝑝𝑜𝑠𝑡𝑖𝑛𝑔), are determined 

by subtracting the avoided emissions from the composting gas emissions, as shown in Eq(9). 

𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐶𝑜𝑚𝑝𝑜𝑠𝑡𝑖𝑛𝑔) = 𝑀𝑆𝑊𝐶 × 𝐶𝑃𝑅 × 𝐶𝑂2𝑒𝑐ℎ𝑒𝑚𝑓  (8) 

𝐶𝑂2𝑒𝑛𝑒𝑡 (𝐶𝑜𝑚𝑝𝑜𝑠𝑡𝑖𝑛𝑔) = 𝐶𝐻4 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 25 + 𝑁2𝑂 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 298 − 𝐶𝑂2𝑒𝑎𝑣𝑜𝑖𝑑𝑒𝑑 (𝐶𝑜𝑚𝑝𝑜𝑠𝑡𝑖𝑛𝑔)  (9) 
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where 𝑀𝑆𝑊𝐶 represents the amount of composted MSW in tonnes; CPR represents the compost production 

rate; 𝐶𝑂2𝑒𝑐ℎ𝑒𝑚𝑓  represents the amount of CO2e from chemical fertilizer that can be avoided by 1 t of compost. 

Table 1: The composition, carbon content, and mineral carbon content of MSW in Beijing (NCSC, 2011). 

 Physical composition (%) Carbon element (%) Mineral carbon (%) 

Food residue  49.85 50.60 11.73 

Paper  22.17 46.13 8.90 

Plastics  21.45 78.77 68.10 

Textiles  0.98 61.03 52.30 

Wood waste 3.43 53.03 18.53 

2.3 Phase 3: Scenario analysis and policy recommendations 

This study establishes five scenarios to project GHG emissions for 2025, 2030, and 2060, aiming to determine 

a more optimal balance between incineration and composting for MSW management. Scenario 1 utilizes the 

business-as-usual treatment practice of 2019 as a baseline for estimating GHG emissions. Scenario 2 proposes 

full-scale composting of food waste, which accounts for 50 % of MSW, while the remaining MSW undergoes 

incineration. Scenarios 3 and 4 increase the proportion of incineration, aligning with Chinese policy directives, 

with waste incineration and composting ratios set at 65:35 and 80:20, respectively. Scenario 5 adopts exclusive 

incineration treatment. These scenarios assess the impact of global warming on different treatment ratios, 

identifying the most effective methods for GHG mitigation and determining the superior treatment approach. 

The findings offer valuable insights for government agencies and urban planners to devise tailored policies and 

measures based on the scenario analyses. 

3. Results and Discussion 

3.1 Bayesian-optimized ANN models for forecasting MSW removal volume 

Figure 2 illustrates the temporal trends in Beijing’s population, GDP, and MSW removal volume. From 1992 to 

2015, Beijing witnessed sustained population growth, culminating in approximately 2.19107 population by 

2020. However, in line with the broader demographic shifts in China, the overall population is expected to exhibit 

a marginal decline in the foreseeable future, as reflected in the projected population curve for Beijing. Conversely, 

Beijing’s GDP consistently grew, surpassing 41.6 trillion CNY by 2022. Despite potential fluctuations in future 

growth rates, the trajectory of GDP is anticipated to maintain an upward trend. The volume of MSW removal, 

influenced by both population and GDP dynamics, peaked in 2019 but experienced a notable downturn in 2020 

due to the impact of the pandemic. While population and GDP contribute to fluctuations in MSW removal 

volumes, population emerges as a dominant predictor, consistent with prior research (Mian et al., 2017). Notably, 

despite the upward trajectory of GDP, the projected MSW removal volume is expected to plateau around 2030, 

hovering close to 13 Mt, with only a slight increase anticipated thereafter. This stabilization is primarily attributed 

to minimal anticipated changes in population dynamics in the future. 

3.2 Calculate GHG emissions for five scenarios 

Table 2 analyses various scenarios regarding CO2e emissions, revealing significant disparities among waste 

management approaches. Scenario 1 stands out with the highest CO2e output by 2060, totaling 8.55 Mt, while 

Scenario 2 demonstrates the lowest emissions for the same period, with only 4.44 Mt CO2e. The result 

underscores that Scenario 1 yields CO2e emissions approximately 1.92 times higher than those of Scenario 2. 

Despite variations in CO2e emissions among the scenarios, all scenarios show an increasing trend over time 

due to a slight rise in the MSW removal volume. Particularly concerning is the escalating trend in CO2e emissions 

within Scenario 1 across the years 2025, 2030, and 2060, indicative of the environmental drawbacks of landfill-

based waste management practices. Despite their prevalence, traditional landfill methods are not aligned with 

sustainable waste management goals, mainly due to challenges in methane recovery (Woon and Lo, 2014). 

Composting emerges as a more environmentally friendly alternative, boasting advantages over incineration and 

landfilling. A gradual decrease in composting treatment across scenarios correlates with an increase in CO2e 

emissions, underscoring the pivotal role of composting in mitigating environmental impact. Prioritizing 

composting over incineration proves beneficial, particularly for scenarios featuring substantial food waste 

volumes, such as Scenario 2, which has a 50:50 ratio between incineration and composting. 

Food waste, primarily organic matter, offers a valuable resource for recycling. Current practices of mixing food 

waste with general household waste for landfilling or incineration result in resource inefficiency and loss (Awasthi 

et al., 2022). Food waste contains nutrients and organic materials that could be harnessed for various beneficial 

purposes, including soil enrichment through composting (Alengebawy et al., 2022). While incineration presents 
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a viable option for reducing overall waste volumes and mitigating environmental impact, it is not without its 

challenges. The high moisture and salt content inherent in food waste can pose difficulties during incineration. 

These elements contribute to low combustion efficiency, increased energy consumption and emissions during 

incineration (Chin et al., 2023), potentially undermining the environmental benefits sought through waste 

management efforts. Addressing these challenges requires further advancements in incineration technology to 

enhance its efficiency. Achieving the ‘zero landfill’ ambition demands a multifaceted approach, beginning with 

robust waste segregation policies and advocating for the incineration of MSW and composting food waste. 

Effective waste segregation forms the cornerstone for subsequent treatment modalities, enabling the diversion 

of organic waste streams towards beneficial reuse and recycling. Integrating waste separation with incineration 

and composting aligns with minimizing landfill dependency and fostering sustainable resource management 

practices. Waste minimization strategies are crucial for reducing CO2e emissions by decreasing the overall 

amount of MSW. These efforts collectively contribute to a more efficient and environmentally friendly waste 

management system. 

 

Figure 2: Historical and predicted values of population, GDP, and MSW removal volume in Beijing 

Table 2: CO2e emissions of MSW treatment (landfill, incineration, composting) in Beijing under five scenarios. 

 Treatment configuration (%) Total CO2e emissions (Mt) 

Landfill Incineration Composting 2025 2030 2060 

Scenario 1 24 50 26 5.10 6.53 8.55 

Scenario 2 0 50 50 3.01 4.02 4.44 

Scenario 3 0 65 35 3.55 4.75 5.24 

Scenario 4 0 80 20 4.09 5.47 6.04 

Scenario 5 0 100 0 4.82 6.44 7.11 

4. Conclusions 

The study underscores the importance of MSW management strategies in mitigating GHG emissions associated 

with MSW. By leveraging Bayesian-optimized ANN models, forecasted results indicate that the MSW removal 

volume is expected to stabilize around 2030, reaching approximately 14 Mt by 2060. Scenario analysis 

highlights the significant potential of prioritizing composting alongside incineration, with a projected reduction of 

approximately 4.11 Mt CO2e emissions by 2060 compared to landfill-focused approaches. These findings 

underscore the pivotal role of composting in promoting sustainability and advocating for integrated waste 

management approaches to achieve environmental conservation goals. Addressing challenges such as 

directing food waste to compost and enhancing incineration efficiency are pivotal in realizing low-carbon MSW 

management and reducing reliance on landfilling. 
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