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Metaheuristic algorithms are well-researched and popular techniques in the field of optimization, which can 

solve complex tasks with a large number of instances with acceptable quality. They are extremely problem- and 

parameter-sensitive methods, so the exact definition of the necessary data and the testing of the appropriate 

parameters fundamentally determine the efficiency and performance of an algorithm. This is a time-consuming 

and expensive task. In many cases, when applying a metaheuristic, it works properly with the variables of a 

given task and there is no specific interval where a given algorithm can still be effective. To increase efficiency 

and reduce costs, the authors defined a general parameter definition by applying the Ant Colony Optimization 

algorithm applicable to the simple Traveling Salesman Problem with the number of cities n=50, where for values 

of 30 ≤ n ≤ 50, the defined parameter setting structure can be properly applied based on the results. The 

proposed parameter setting structure can work effectively not only for the task presented in the paper, but also 

for any similar task within the defined interval. In the case of tasks of a similar size, it is not necessary to 

experiment with the parameters to achieve the appropriate result, thereby reducing the optimization time and 

improving efficiency. The presentation of the set parameter setting scenarios and the obtained results all 

contribute to reducing the optimization time in the field of logistics as well. All of this can also help facilitate the 

practical application of metaheuristics in solving NP-hard tasks.  

1. Introduction 

There are countless methods to choose from to optimize a task, depending on how complex the given problem 

is. Exact methods can give exact results, but they cannot effectively handle problems with a large number of 

instances. On the other hand, metaheuristic solutions give an approximate optimal solution, but they can also 

be effectively used in complex NP-hard problems.  

Few scientific works deal with the general comparison of methods that provide exact or definite optimal solutions 

and metaheuristic solutions, and each example is typical of the solution to a specific problem. Chandra et al. 

(2021), for example, compare the Branch and Bound (B&B) method with the Fruit Fly Optimization Algorithm 

(FOA) and the Artificial Atom Algorithm (A3) metaheuristics. In terms of processing time, the difference between 

the two methods is more than 12 days; however, if certain conditions are met, B&B performs better.  

Applying a metaheuristic is a costly and time-consuming task. The scientific community has already proven that 

they can be applied well where exact methods are no longer able to provide results within an acceptable 

calculation time. Many metaheuristic algorithms have already been used in logistics, but there is little real use 

of these techniques. It is not enough to implement a method and accept the first result. It is necessary to test 

the parameters and determine what an acceptable setting is under the given conditions. In the paper by Chirwa 

et al. (2024), a good example of this can be seen, where it is properly described which are the appropriate 

parameter settings for a given task. This is a great help when optimizing similar tasks. 

The primary goal of this paper is to find a generic parameter setting that can work effectively under specific 

conditions. This could increase efficiency and save time when applying and adapting an algorithm. The focus of 

the paper is the importance of fine-tuning the parameters, which can be seen as highlighted in Figure 1. 

The paper is structured as follows. Section 2 is the literature review, section 3 describes the Travelling Salesman 

Problem, and section 4 presents the efficiency of the parameter tuning. In section 5, the results are summarized. 
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Figure 1: Flow chart: Application of metaheuristic optimization procedure 

2. Literature review 

Thousands of scientific papers deal with metaheuristic algorithms, as well as the Travelling Salesman Problem 

(TSP) and Ant Colony Optimization (ACO). Figure 2 clearly shows the literature statistics of the last five years 

from one database (so there are many more research materials than this) with the specified keywords. The 

problem is that it is difficult to find the answers to the questions that arise either on the practical side, i.e. in 

industry or in scientific communities, among the many papers. It is also due to this that the practical use of 

metaheuristics is small (Swan et al., 2022), although a lot of scientific work has been published in recent years 

on the excellent problem-solving ability of metaheuristic algorithms. However, most of these remain at the 

theoretical level and outside the scientific community, less commonly used techniques in practice. 

 

Figure 2: Literature analysis 

The performance of metaheuristics and the accuracy of the results are greatly influenced by the appropriate 

choice of parameters (Joshi and Bansal, 2020). This is an extremely time-consuming and expensive task, as it 

is usually done experimentally (Shadkam, 2022). Many research works describe how important the parameter 

tuning of algorithms is, but most of the time, the process is not documented, and in many cases, the most 

favourable parameter settings for a given task are not summarised. 
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During the publication of a metaheuristic, countless data and information are indicated, all of which can help in 

adaptation, primarily for computer scientists. These include, for example, the pseudocode of the algorithm, the 

detailed description of the operating mechanisms, and the presentation of the most important parameters. With 

the help of expert knowledge that can be obtained from scientific works, a metaheuristic can most likely be used 

to solve various problems. However, this also requires the knowledge of specialists in a specific field. 

In the field of logistics, metaheuristics are also often used, as many tasks are NP-hard. With the novel 

classification of metaheuristics and logistic tasks (Two groups have been distinguished: discrete and continuous. 

The tasks were classified according to the variables, and the metaheuristics according to the type of problems 

that have been solved efficiently in the literature); it is possible to select the algorithm with the highest probability 

of solving a given problem efficiently and to implement an optimisation method using expert knowledge available 

from pseudocode and papers. The combination of these two factors can ensure greater practical application of 

metaheuristic algorithms. To prove the validity and efficiency of a written method, it is necessary to solve the 

problem using an exact method since this is the basis for obtaining an exact solution to the problem, against 

which the result of the metaheuristic method can be compared. Then, the next important step is to adjust the 

parameters to improve the accuracy of the results of the optimisation procedure. Fine-tuning a technique 

requires the logistician's professional knowledge in the application of optimisation methods, and the cooperation 

of several experts in solving a problem is of paramount importance.  

A well-researched and popular problem is the Traveling Salesman's Problem, which can not only be used to 

determine the shortest distance or the most optimal tour of given points but also has many other practical 

applications, such as production scheduling, material flow planning problems, waste collection management 

(Pop et al., 2024), picking problems, psychological data analysis, frequency assignment problem in a 

communication network, etc. (Jati et al., 2023). 

TSP is a good choice because it is a combinatorial problem with discrete variables belonging to the NP-hard 

complexity class, but in the case of a small problem instance, it can be solved using an exact method, for 

example, linear programming, dynamic programming, and many other algorithms providing exact solutions. 

However, in multifactorial cases, metaheuristic solutions can provide an acceptable result. In this paper, the 

TSP is solved using the Ant Colony Optimization (ACO) algorithm in addition to the exact method, and the 

importance of parameter tuning for better results is shown. The different results obtained as a function of the 

parameters to solve a problem will be examined, and a general formula will be determined for the problem given 

the corresponding parameters within a specified interval. All this can increase efficiency in terms of time and 

costs, as well as sustainability in the field of logistics. 

3. Traveling Salesman Problem 

The Traveling Salesman Problem is a much-researched and one of the best-known combinatorial, NP-hard 

optimisation problems due to its wide range of applications. TSP can be formulated simply as follows: given a 

set of cities and the known travel cost, which can be, for example, distance, time, money, etc., between each 

pair of cities. The task of the agent is to visit each city exactly once and return to the starting point. For this, it is 

necessary to find the best solution, which is to minimise travel costs. The challenge of this task is to arrange the 

cities in the best possible order (Jati et al., 2023). 

There are countless methods for solving TSP (Matai et al., 2010). One of the simplest deterministic solutions is 

a brute-force search, which explores all possible permutations of cities and calculates the total distance of each 

permutation. The goal is to find the permutation that results in the minimum total distance or least cost (optimal 

tour). Other possible exact solution algorithms that can solve a simple TSP are the Bellman–Held–Karp 

algorithm, Branch-and-Bound, Branch and Cut, etc. These methods can be used properly for small-scale 

problems since the calculation time would not be acceptable for a large-scale problem instance. "Researchers 

have already demonstrated that there is currently no scheme or algorithm for finding an exact solution in 

polynomial time." (Jati et al., 2023). 

Due to the NP-hard complexity of the TSP, heuristic and metaheuristic algorithms are able to find a satisfactory, 

high-quality or near-optimal solution within an acceptable computation time.  

TSP has already been solved with a lot of metaheuristics, the following list - without claiming to be complete - 

contains them: African Buffalo Optimization, Ant colony optimization, Artificial bee colony algorithm, Artificial 

Ecosystem Algorithm, Bean Optimization Algorithm, Bumble Bees Mating Optimization, Chicken swarm 

optimization, Clonal Selection Algorithm, Consultant-Guided search, Crystal Energy Optimization Algorithm, 

Discrete Bacterial Memetic Evolutionary Algorithm, Egyptian Vulture Optimization, Elephant Search Algorithm, 

Firefly algorithm, Fish swarm algorithm, Genetic algorithm, Golden ball, Harmony Search Algorithm, Honey-

bees mating optimization algorithm, Hunting search algorithm, Hydrological cycle algorithm, Intelligent Water 

Drops Algorithm, Invasive Weed Optimization, Memetic Algorithm, Penguins Search Optimization Algorithm, 

Photosynthetic Learning Algorithm, River Formation Dynamics, Shuffled Frog Leaping Algorithm, Simulated 
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annealing, Swallow Swarm Optimization Algorithm, Tabu Search algorithm, The scientific algorithms, Variable 

Neighborhood Descent Algorithm, Water Wave Optimization, Water-flow Algorithm (Ezugwu et al., 2021 and 

Kóczy et al., 2018). 

4. The importance of parameter settings 

Seeing the metaheuristics applied to TSP, the question may arise: which is the best and most efficient method? 

If an algorithm has already successfully solved a TSP, then what was the purpose of using other algorithms? 

There is no study that compares these results, highlighting the problem formulation and the required parameters. 

Expert knowledge should be gathered from individual articles, which can explain why which method works well. 

However, a complete comparison is almost impossible since the papers may lack the data necessary for a 

complete analysis. How many of the listed algorithms were/are used in practice to actually solve a task? It would 

be necessary to promote the more frequent use of metaheuristic algorithms in industrial practice since only a 

small percentage of the vast amount of theoretical knowledge and scientific material appears in real use.  

Below, the authors examine the extent to which scientific papers and pseudocode of an algorithm can help on 

the practical side. A symmetric TSP (the distance between two cities is the same in both directions) was chosen 

as a test task, and Ant Colony Optimization (ACO) was chosen as a metaheuristic. First, it was examined 

whether a program could be created by taking into account the ACO pseudocode and its most important 

metaheuristic properties, and then it was tested on a specific TSP task with the objective function Eq(1). To 

determine whether the algorithm works properly, the tasks were solved using the exact method that provides 

accurate results and the ACO algorithm. The logic of the exact method is to find and explore all possible 

permutations of cities and calculate the total distance of each permutation. Goal: Find the permutation that 

results in the minimum total distance. For comprehensive proof, the study covers small, medium, and large 

numbers of problems. According to the authors' hypothesis, if the metaheuristic approach works properly, then 

only it will be able to provide results in the case of a large problem instance. In all cases, the possible solutions 

were examined using an exact solution method and the ACO metaheuristic approach (called ACO in the tables). 

The program codes were run in Python. 

Table 1 shows which of the two solution methods is able to solve the problem properly based on increasing the 

number of cities (n), and then Table 2 shows the specific results. Based on these, it can be said that the exact 

method could no longer provide results within a foreseeable time at n=50 but performed better than the 

metaheuristic approach based on a run experiment at n=10. However, this does not mean that a better result 

cannot be achieved with ACO by changing the parameters. 

 

(1) 

Table 1: Running performance  

Method  n=5 n=10 n=50 

Exact ✓ ✓ - 

ACO  ✓ ✓ ✓ 

Table 2: Running values  

Method  n=5 n=10 n=50 

Exact 160 1,050 - 

ACO  160 1,105 3,315 

One of the characteristics of metaheuristic algorithms is that it is necessary to experiment with the parameter 

settings to improve the results. The defining and most important parameters and operating mechanisms of ACO 

are as follows: The alpha and beta constants allow the user to control the relative importance of a trail versus 

its visibility (Bavey and Kollin, 2017). Pheromone trails are modified during the run of an ACO algorithm to bias 

the construction of new solutions. Pheromone updating usually consists of two complementary steps: 

pheromone evaporation and pheromone deposition. The general idea behind the two steps is to bias the 

pheromone trails to favour the formation of high-quality solutions (López-Ibáñez et al., 2018). In general, the 

larger the size of the ant colony, the stronger the search ability of the algorithm. Range of pheromone volatility 

factor (0, 1). If it is too small, the pheromone on the path will not evaporate in time, resulting in an excessive 

amount of pheromone on the path, which affects the convergence efficiency of the algorithm. If it is too large, 

the pheromone on the road cannot be maintained, and the ant colony loses the experience information of 
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previous iterations (Yang et al., 2020). The authors defined the running time (t) as t < 1 min (this is the 

determining factor for the number of iterations). Different scenarios have been set up in order to get an 

approximate picture of the type of problem and the cohesion of the parameters providing a possible good 

solution. In each of the individual cases, n=50 cases were taken as a basis for the ACO approach. The primary 

goal is to find the minimum distance between cities so that each city is visited exactly once by the agent. The 

program was run 20 times in each scenario, providing valuable information. Table 3 shows the parameter 

settings of each scenario (S1-S12). Up to S5-S10, based on the results of the first 5 runs, it could be seen that 

the algorithm performs worse than in the first four scenarios, so they were not run 20 times. Table 4 shows the 

running results in the scenarios that showed promising results, highlighting the best and worst results.  

Table 3: Parameter settings for scenarios  

Scenario num_ants num_interations alpha beta decay_factor 

S1 10 100 1.0 2.0 0.1 

S2 50 100 1.0 2.0 0.1 

S3 50 200 1.0 2.0 0.1 

S4 100 200 1.0 2.0 0.1 

S5 50 200 0.5 5.0 0.01 

S6 100 200 0.5 5.0 0.01 

S7 50 200 0.1 5.0 0.01 

S8 100 200 0.1 5.0 0.01 

S9 50 200 1.0 2.0 0.01 

S10 100 200 1.0 2.0 0.01 

S11 50 200 1.0 2.0 0.5 

S12 100 200 1.0 2.0 0.5 

Table 4: Best and worst run results for different scenarios and average of 20 runs  

Results S1 S2 S3 S4 S11 S12 

Best result 3,342 3,298 3,259 3207 3249 3,132 

Worst result 3,710 3,560 3,428 3396 3469 3,369 

Average 3,538.55 3,398.15 3,344.75 3,316.2 3,335.5 3,282.15 

As can be seen in Figure 3, scenario 12 performed the best overall, based on which more favourable results 

can be obtained for solving a problem of similar size according to the following values (n represents the number 

of cities): Sn parameter settings: num_ants = 2n, num_iterations = 4n, alpha = 1.0, beta = 2.0, decay_factor = 

0.5. After specifying the parameters that can be prescribed in general, it is also advisable to determine at what 

interval they work effectively. The worst (S1), the best (S12) scenario, and the parameters (Sn) that can be 

specified from the general description were compared on symmetric matrices with n=10, 20, 30, 40, and 50 

values. The results are shown in Table 5. 

 

Figure 3: Graphical representation of the results of different scenarios 
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Table 5: Comparison of running values for scenarios S1, S12 and Sn 

Scenario M10x10 M20x20 M30x30 M40x40 M50x50 

S1h 1,100 2,241 2,553 3,190 3,710 

S1s 1,075 2,241 2,490 3,024 3,342 

S1a 1,091 2,241 2,517 3,134 3,534 

S12h 1,085 2,241 2,488 3,026 3,369 

S12s 1,070 2,241 2,475 2,989 3,132 

S12a 1,075 2,241 2,482 3,008 3,281 

Snh 1,140 2,241 2,490 3,017 3,369 

Sns 1,110 2,241 2,475 2,991 3,132 

Sna 1,120 2,241 2,485 3,002 3,281 

(Subscripts: h - the highest of the running values, s - the lowest of the running values, a - the average of all the running values) 

The results show that the general parameter description structure defined for the task with n=50 cities still works 

properly and provides an efficient, optimal result in the event of a 40 % downward deviation.  

5. Conclusions 

Applying a metaheuristic algorithm in practice is an extremely time-consuming, expensive and complicated task. 

Although there are thousands of scientific works on the subject, the real, practical application of metaheuristics 

is small. The authors wanted to contribute to solving this deficiency with this article. The operation and accuracy 

of a metaheuristic is greatly influenced by the correct setting of the parameters. This is done experimentally. 

The authors defined a general parameter structure for solving a symmetric matrix-based TSP problem with 

ACO. In the cases with the following number of cities (n), the algorithm works efficiently with the following 

parameter settings: if 30 ≤ n ≤ 50, then num_ants = 2n, num_iterations = 4n, alpha = 1.0, beta = 2.0, decay_factor 

= 0.5. The experimental results showed that the parameter settings determined based on the task presented in 

the paper give the best results, which contributes to the efficient solution of similar types of problems by reducing 

the total optimisation time. A further research goal is the examination of tasks with n>50 cities and the 

determination of additional general parameter structures. 
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