Abstract
The development of food processes, ingredients and formulations is a daily topic for the food industries. Model-based product, process and equipment design are getting increasing industrial attention, due to the high potential in matter of time and money saving. Bringing these advantages to the consumers’ table by the application of this approach is one of the ultimate challenges of food and bioprocess engineering. This work aims to consider roast beef cooking as a practical, widespread, case study. A computational model, which correlates temperature, time and weight loss for a standard piece of meat cooked in oven, is developed and validated with experiments. The thermal properties are derived with a general approach, applicable to other food. The heat and mass transport equations are based both on conservation laws and on the cooking conditions.