Abstract
The chemical engineer has nowadays a wide choice of tools, numerical libraries, and programming languages to perform computations. Actually, it is possible to use several well established commercial packages, implement dedicated solvers into specific programming languages, or use existing numerical libraries. Also, it is possible to combine these possibilities to get either superior performances or more robustness, according to the problem features through the so-called mixed- language approach, which is increasingly spreading in the scientific communities. Since there is no full clarity on their benefits in handling numerical problems and their performances have not been yet compared in the literature, this paper is aimed at analyzing efficiency and robustness of some of the most widespread methodologies adopted for numerical computations: the conventional methods, the implementation of numerical libraries, the mixed-language, and the commercial tools. Specifically, the common case of differential systems is selected as comparison field.