Abstract
Corning® Advanced-Flow™ Reactors are continuous reactors with hydraulic diameters in the range of 0.3 up to a few millimetres, showing intensified mass and heat transfer characteristics. These enable the development of innovative chemical processes, which can be highly exothermic, hazardous, or entailing side reactions, through more efficient, economical and safer transformation routes.
Corning® Advanced-Flow™ Reactors are compact, adaptable and scalable, optimizing overall production cost and quality of high-value specialty, fine, and pharmaceutical chemicals. Their gas-liquid flow and mass transfer characteristics were investigated for a G1 module. The flow patterns were visualised; bubbly or churn flow was observed, depending on the flow rates. The two-phase frictional pressure drop was satisfactorily predicted by the Lockhart-Martinelli equation, with a modified value of Chisholm’s factor.
The mass transfer was studied using the absorption of CO2 in a 0.5 M buffer solution of NaHCO3/Na2CO3. The volumetric mass transfer coefficient increases with the increase of gas or liquid flow rates and has very good values, proving the mass transfer intensification characteristics of the Corning® Advanced-Flow™ Reactors.