Simultaneous Production of Hydrogen and Methane from Cassava Wastewater Using a Two Stage Upflow Anaerobic Sludge Blanket System under Thermophilic Operation
Intanoo, P.
Gulari, E.
Chavadej, S.
Download PDF

How to Cite

Intanoo P., Gulari E., Chavadej S., 2014, Simultaneous Production of Hydrogen and Methane from Cassava Wastewater Using a Two Stage Upflow Anaerobic Sludge Blanket System under Thermophilic Operation, Chemical Engineering Transactions, 39, 1567-1572.
Download PDF

Abstract

The objective of this study was to investigate the hydrogen and methane production from cassava wastewater by using a two stage upflow anaerobic sludge blanket (UASB) system under thermophillic operation (55 °C). The recycle ratio of the effluent from the methane bioreactor-to-the feed flow rate was fixed at 1:1 and the solution pH in the hydrogen bioreactor was maintained at 5.5 by a pH controller while the solution pH of the methane bioreactor was not controlled. The liquid working volumes of the hydrogenand methane bioreactors were 4 and 24 L, respectively. The two stage UASB system was operated at different COD loading rates (30, 60, 90, 120, and 150 kg/m3d based on the hydrogen bioreactor volume). Under the optimum COD loading rate of 90 kg/m3d based on the hydrogen bioreactor volume corresponding to 15 kg/m3d based on the methane bioreactor volume for the hydrogen bioreactor, theproduced gas contained 40 % H2, 52 % CO2 and 8 % CH4 and the system provided a maximum hydrogen yield and specific hydrogen production rate of 18 mL/g COD removed and 520 mL/L d, respectively. Under this optimum COD loading rate, the produced gas of the methane bioreactor contained 65 % CH4 and 35% CO2 without hydrogen and the system provided a maximum methane yield and specific methane production rate of 115 mL/g COD removed and 650 mL/L d, respectively. The operation of recycling from methane bioreactor to hydrogen bioreactor optimized the use of NaOH for pH control in the hydrogen production step.
Download PDF