A Simulation-Based Optimization Method for Solving the Integrated Supply Chain Network Design and Inventory Control Problem under Uncertainty
Ye, W.
You, F.
Download PDF

How to Cite

Ye W., You F., 2015, A Simulation-Based Optimization Method for Solving the Integrated Supply Chain Network Design and Inventory Control Problem under Uncertainty, Chemical Engineering Transactions, 45, 499-504.
Download PDF

Abstract

One of the key objectives of an optimised supply chain is to maintain a low operation cost as well as the service quality at a satisfactory level under demand uncertainty. However, the supply chain network design and inventory control optimisation are usually conducted in a sequential manner where the supply chain network is first determined by solving a mixed-integer programing (MIP) problem, and then the supply chain system with the given network design is tested as a “what if” problem in order to evaluate and improve its performance. Over the last decade, simulation modelling is regarded as an efficient tool for evaluating the performance of a real-world supply chain under different conditions and flexible control policies and simulation-based optimisation has been widely studied for solving inventory management problem under various uncertainties. In this work a hybrid computational framework is proposed to solve both the network design problem and the associated inventory control problem simultaneously. By incorporating region-wise metamodeling method to reduce the computation load, a multi-echelon supply chain case with 13 inventory stocking nodes can be solved within 3,621 s with the proposed algorithm. As a comparison, the simulation-based problem is also solved by the genetic algorithm (GA) toolbox in MATLAB, which only returns a 31 % higher cost after 13,844 s.
Download PDF