Effect of pH at Anode and Cathode Chamber on the Performance of Biological Cathodic Protection
Afira Azman, Anis Fitri
Azita W Ali, Wan Nor
Samsudin, Muhaimin
Zaini Makhtar, Muaz Mohd
Ibrahim, Norazana
Kasmani, Rafiziana Md
Download PDF

How to Cite

Afira Azman A. F., Azita W Ali W. N., Samsudin M., Zaini Makhtar M. M., Ibrahim N., Kasmani R. M., 2018, Effect of pH at Anode and Cathode Chamber on the Performance of Biological Cathodic Protection, Chemical Engineering Transactions, 63, 421-426.
Download PDF

Abstract

A new corrosion control system which is biological cathodic protection (CP) system was developed using the concept of microbial fuel cells (MFCs). Microorganisms available in domestic wastewater was utilised to generate electrons and supplied to the carbon steel pipe, and as consequence, protect the pipe from corrosion. There are various factors affect the performance of the system including the pH at the anode and cathode chamber. This study aims to analyse the optimum pH at anode and cathode. In this study, wastewater was used as the electrolyte and graphite rod as the electrode in the anode compartment while cathode compartment was filled with sand and carbon steel pipe acts as the cathode. Both compartments were connected by a plastic tubing and separated by the membrane. It was found that optimum pH at anolyte and catholyte were 8 and 6. The CP potential versus copper sulfate electrode (CSE) was -752 mV. It shows that the corrosion of carbon steel pipe was reduced since the native potential of the carbon steel pipe versus CSE was -560 mV.
Download PDF