In the present contribution, the utilization of steel-mill gases for an industrial methanol synthesis process is described. The focus of this work is on the influence of syngas compositions derived from steel-mill gases on an industrial Cu/ZnO/Al2O3 catalyst. Elevated CO2 and H2O concentrations seem to have an irreversible impact on the activity of the catalyst. In order to obtain realistic gas composition for the catalyst tests, a process simulation of the methanol synthesis was conducted. The calculated gas compositions at the reactor inlet were applied in a practical test in order to evaluate the catalyst stability under steel mill gas conditions. No noticeable deactivation was observed.