Is Pasta Cooking Quality Affected by the Power Rating, Water-to-pasta Ratio and Mixing Degree?
Cimini, Alessio
Cibelli, Matteo
Moresi, Mauro
Download PDF

How to Cite

Cimini A., Cibelli M., Moresi M., 2019, Is Pasta Cooking Quality Affected by the Power Rating, Water-to-pasta Ratio and Mixing Degree?, Chemical Engineering Transactions, 75, 115-120.
Download PDF

Abstract

In this work, the main chemico-physical cooking quality of commercial spaghetti was evaluated using two typical home gas- or electric-fired hobs by setting the cooking water-to-pasta ratio (WPR) and power supplied (PC) during the pasta cooking phase in the presence or absence of stirring at 3 or 10 L kg-1 and 0.15 or 1.0 kW, respectively. The average values of cooked pasta water uptake (1.3±0.1 g g-1), cooking loss (38±4 g kg-1), degree of starch gelatinization (12±1 %), hardness at 30 % (6.0±0.4 N) or 90 % (15±1 N) deformation, and resilience (0.60±0.02) resulted to be practically constant and independent of the cooking system, WPR and PC values used at the 95 % confidence level. The overall energy efficiency of the induction hob was about the double of that of the LPG-fired one. Moreover, at WPR=3 L kg-1 and PC=0.25 kW, it was possible to cook spaghetti under mild mixing in no more than 15 min with a minimum energy consumption of 0.54 Wh g-1, this amounting to about the 35 % of that consumed with the same sustainable cooking procedure at WPR=10 L kg-1. The intermittent mixing degree at a rotational speed of 50 rev min-1 appeared to be sufficient at WPR=3 L kg-1. The induction hob was thus eligible to develop a specialized appliance for pasta cooking.
Download PDF