Pectin-based Films for Applications in the Horticultural Sector: a Preliminary Characterization
Carullo, Daniele
Vergani, Lorenzo
Franzoni, Giulia
Mapelli, Francesca
Ferrante, Antonio
Borin, Sara
Farris, Stefano
Pdf

How to Cite

Carullo D., Vergani L., Franzoni G., Mapelli F., Ferrante A., Borin S., Farris S., 2024, Pectin-based Films for Applications in the Horticultural Sector: a Preliminary Characterization, Chemical Engineering Transactions, 110, 283-288.
Pdf

Abstract

Plastic containers in the horticulture sector largely rely on plastics of fossil origin. Although these plastics have excellent mechanical properties, resilience towards chemical/microbiological degradation, durability, and affordable price, they have a high environmental impact due to their inherent non-biodegradability. In line with the most recent EU strategies on a trans-sectorial transition to sustainable systems, the horticultural sector is seeking for new materials to produce plant nursery plugs as an alternative to conventional plastics. The present work is a part of the project "BBPlug”, which aims to add value to agri-food industry wastes, reducing plastics and fertilizers in horticulture. Here, we propose a new material made of pectin extracted from citrus peel as a green and biodegradable substrate to produce plant nursery plugs. To this purpose, pectin-based films were fabricated by solvent-casting from film-forming solutions with increasing amounts of glycerol as plasticizer (6.7 – 33.3 gGlycerol/gPectin), microfibrillated cellulose (MFC) as reinforcing agent (2.7 – 8.1 mgMFC/gPectin), and at two different pH values (3.5 and 7.0). Puncture resistance, water solubility, and oxygen-barrier properties of the films were then investigated. Films from formulations at pH = 3.5 exhibited an overall better mechanical behavior over their counterpart at pH = 7. The best puncture resistance and water solubility were displayed by films from the least glycerol-loaded formulations. The addition of MFC to the film-forming solution improved the oxygen-barrier properties of the films but led to a reduction in their water solubility. In other tests, a selection of different plant growth-promoting (PGP) bacteria was demonstrated to have a boosting effect on the development of a model vegetable (i.e., lettuce), thus offering creative opportunities for the advancement of the “BBPlug” project.
Pdf