Tomacruz, J. G. T., Pilario, K. E. S., Remolona, M. F. M., Padama, A. A. B., & Ocon, J. D. (2022). A Machine Learning-Accelerated Density Functional Theory (ML-DFT) Approach for Predicting Atomic Adsorption Energies on Monometallic Transition Metal Surfaces for Electrocatalyst Screening. Chemical Engineering Transactions, 94, 733-738. https://doi.org/10.3303/CET2294122